
.headerlink { font-family: Verdana, Arial, ;
font-size: 9px; color: #33CCFF; text-decoration:
.sublinks { font-family: Verdana, Arial, H;
text-decoration: none}
.seperator { font-family: Verdana, Arial, }
.links { font-family: Verdana, Arial, }
.navform { font-family: Verdana, Arial, ;
font-size: 10px; color: #ff9900; text-}
.date { font-family: Verdana, Arial, Helvetica,
color: #ff9900; text-decoration: none}
.line { font-family: Verdana, Arial, Helvetica, }
--></style>
<script language="Javascript">
<!-- Hide script from old browsers
document.WM = new Object();
document.WM.menu = new Object();
document.WM.menu.dropdown = new Array();
function WM_initializeToolbar(){
}</script></head>
<body bgcolor="#000000" text="#CCCCCC" link="#33C
onload="WM_initializeToolbar()">
<table border=0 cellpadding=0 cellspacing=0 width
<tr><!--blue AD ROW--><td bgcolor=#336699 width=5
<td bgcolor=#FF9900 valign=top rowspan=5><a
href="http://www.hotwired.com/webmonkey/index.htm
src="http://a1112.g.akamai.net/7/1112/492/0201200
height=173 border=0 alt="Webmonkey"></td>
<td bgcolor=#336699><table cellpadding=0 cellspac
<iframe src="http://ln.doubleclick.net/adi/wm.ln/
</td><td><img src="http://a1112.g.akamai.net/7/11
</table></td><td bgcolor=#336699><img src="http:/
<td bgcolor=#336699 width=50%><img src="http://a1
</tr><tr><!--yellow RULE-->
<td bgcolor=#FFFF66 width=50%><img src="http://a1
</tr><tr><td bgcolor="#FF9900" width="50%"><img s
<td bgcolor="#FF9900"><table border="0" cellpaddi
src="http://a1112.g.akamai.net/7/1112/492/0201200
border="0" alt="Webmonkey"></td><td valign=bo
<tr><td rowspan="3" bgcolor="#663300"><img src="h
<td bgcolor=#663300><table border="0" cellpadding
cellspacing="0"><tr><td><font size="1" face="Verd
color="#FF9900"><div class="navform">SEARCH WE
<td bgcolor="#663300"><table border="0" cellpaddi
<td rowspan="3" bgcolor="#663300"><img src="http
<tr><td valign="bottom" bgcolor="#CC6600">
<table cellpadding="0" cellspacing="2" border="0"
name="search"><td valign=bottom><font face="Verda
size="1"><div class="searchforms"><input type=hid
<td valign=bottom><font size="1" face="Verdana,Ar
</tr><tr><td colspan=2><font face=Verdana,Arial s
href="http://r.hotwired.com/r/hw_wm_r_atomz/http
</form></tr></table>
</td><td valign="top" bgcolor="#CC6600">
<table cellpadding="0" cellspacing="2"
border="0"><tr><form name="RedirectSearch" metho
<div id="container">
<font size=1 face=Verdana,Arial,Helvetica color=#
<img src="http://a1112.g.akamai.net/7/1112/492/02
name="instructions">
<div id="authoring" style="display: block" class=
src="http://a1112.g.akamai.net/7/1112/492/0201200
name="authoringImg" align="absmiddle"><a
href="/webmonkey/authoring/index.html" onclick="W
class="headerlink" onmouseover="WM_imageSwap('ins
'http://a1112.g.akamai.net/7/1112/492/02012000/st
<div id="authoringContent" style="display: none"
<a href="/webmonkey/authoring/html_basics" class=
<a href="/webmonkey/authoring/tables" class="subl
<a href="/webmonkey/authoring/frames" class="subl
<a href="/webmonkey/authoring/browsers/" class="s
<a href="/webmonkey/authoring/tools/" class="subl
<a href="/webmonkey/authoring/stylesheets" class=
<a href="/webmonkey/authoring/dynamic_html" class
<a href="/webmonkey/authoring/xml" class="sublink
</div>
<div id="design" style="display: block" class="he
src="http://a1112.g.akamai.net/7/1112/492/0201200
align="absmiddle"><a href="/webmonkey/design"
onclick="WM_collapse(2); return false" class="hea
onmouseover="WM_imageSwap('instructions', 'http:/
onmouseout="WM_imageSwap('instructions',
'http://a1112.g.akamai.net/7/1112/492/02012000/st
<div id="designContent" style="display: none" cla
<a href="/webmonkey/design/site_building/" class=
<a href="/webmonkey/design/graphics/" class="subl
<a href="/webmonkey/design/fonts/" class="sublink
</div>
<div id="multimedia" style="display: block" class
src="http://a1112.g.akamai.net/7/1112/492/0201200
name="multimediaImg" align="absmiddle"><a
href="/webmonkey/multimedia/" onclick="WM_collaps
class="headerlink" onmouseover="WM_imageSwap('ins
'http://a1112.g.akamai.net/7/1112/492/02012000/st

VEEN
The Art &

 Science
 of W

eb D
esign

ASWD_001121.qxd 11/27/00 11:17 AM Page 2

The Art & Science of Web Design

Copyright © 2001 by Jeffrey Veen

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-7897-2370-0

Library of Congress Catalog Card Number: 99-069020

Printed in the United States of America

First Printing: December, 2000

01 00 99 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Que cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and
the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book.

Executive Editor Karen Whitehouse

Acquisitions Editor Michael Nolan

Interior Design & Production by Douglas Bowman

Indexing by Aamir Burki

Proofreading by Victoria Elzey

Cover by Jeffrey Veen

Cover Image Wendy Skratt

For everyone who has ever looked at the Web and asked
“Why?” rather than “How?”

ASWD_001121.qxd 11/27/00 11:17 AM Page ii

Contents

Acknowledgments vii

Introduction ix

[1] Foundations 1
Good design comes from a deep understanding of the
technologies behind the scenes.

[2] Interface Consistency 30
Learning from convention will make your site better.

[3] Structure 72
Information Architecture defined—from the Web’s
biggest sites, to the simplest user experience, to an
XML-enabled future.

[4] Behavior 102
Designing with interactivity and self-aware content.

[5] Browsers 134
With so many broken browsers, you’ll need a strategy for
designing for them all.

[6] Speed 168
The performance of your Web site is the most critical
factor of its success.

[7] Advertising 190
Being commercial is a reality. Is your site as effective as
it could be?

[8] Object-Oriented Publishing 212
Harness the power of dynamic, database-driven Web sites.

Index 247

ASWD_001121.qxd 11/27/00 11:17 AM Page iv

viivi

Acknowledgments

“If I have seen further, it is by standing on the shoulders
of giants.” — Isaac Newton, 1676

This book would not have been possible without years of
collaboration with some of the most talented people in the
industry. Specifically, I am eternally grateful to have had the
opportunity to work with HotWired’s creative director
Barbara Kuhr. Not only did she spark many of the theories
and processes in this book, but put together an unbelievably
competent and articulate design team. Two of those design-
ers in particular, Eric Eaton and Douglas Bowman, have
been indispensable sources of inspiration. Doug also
designed this book, and spent long hours making sure every
detail was perfect.

I’m also thankful that I was able to convince Steven
Champeon to edit this book. He suffered through countless
iterations and desperate phone calls when I couldn’t find
the words for the ideas I had. He has inspired much of this
work, and has pointed me in the right direction on matters
of small-batch bourbon and alternative country music.

The folks at New Riders have been a joy to work with.
Michael Nolan and Karen Whitehouse encouraged me to
take on this project and pushed me to make it the best it
could be. They also took me out to dinner a lot, which
really helps.

I also had many, many conversations during the writing
of this book that helped to make it what it is. Among
those who’s opinion I value are Joel Truher, Peter Merholz,
Taylor, Tim Gasperak, Christina Wodke, Jon Littell, Drue
Miller, Steven Johnson, Mike Kuniavsky, Nadav Savio,

ASWD_001121.qxd 11/27/00 11:17 AM Page vi

ixviii

He is well-dressed, confident, standing before the staff
meeting ready to present a “revolutionary change in how we
view this company’s very identity.” The conference room
lights are dimmed and the LCD projector is humming.
Someone types a URL into the 20 square feet of browser on
the screen, and up pops one of those sites. “Loading...” the
screen reports, and there’s a bit of nervous chatter in the
room as half a meg of multimedia streams through the cor-
porate T1. Suddenly the screen explodes into spinning text
and bright-colored objects careening onto the page. A tech-
no music loop thumps along as executives around the table
lean in. “This is,” says the proud presenter, “EXACTLY
what we should be doing online!”

“Actually,” you shout over the maddening music, “this is
the LAST thing we should EVER do with our online pres-
ence.” The music stops. The room is silent but for the slight
creaking noise of 16 leather conference room chairs all swivel-
ing in unison to look at you, the Web Designer. You’re on.

The skills it takes to be successful on the Web reach far
beyond knowing the code. While most of us who build the
Web for a living have the basic technologies wired to our
brainstem, rare is the designer that fundamentally under-
stands the Web at its core. Yes, there are plenty of resources
available to teach us HTML and Cascading Stylesheets and
JavaScript and even User-Centered Design. But lacking is a
guide to fully understanding why the technologies work they
way they do, and how to exploit that knowledge to build
successful sites.

Back at the conference table, you pause for a moment,
then stand up and walk to the screen, pointing out a dozen
reasons why this particular site fails—not only as an exam-

IntroductionJonathan Louie, Lance Arthur, John Shiple, Jesse James
Garret, Alex Wright, Margaret Gould Stewart, Michael
Kay, Kim Ladin, Frank Leahy, Dave Hendry, Michael
Sippey, Greg Veen, Mark Hurst, June Cohen, David Reid,
Jeffrey Zeldman, Derek Powazek, and a bunch of others
whose names I’ve undoubtedly missed.

Finally, none of this would have ever been possible with-
out the unrelenting support and encouragement of my wife
Leslie. Thank you for reading chapter after chapter, telling
me when things were good and bad, and not letting me drop
out of school all those years ago.

ASWD_001121.qxd 11/27/00 11:17 AM Page viii

Introduction xiThe Art & Sc ience of Web Designx

• There are so many new technologies vying for our
attention. How can I ensure we don’t commit our
Web site to one, or get stuck designing 3D fly-
throughs of the corporate campus?

• We hired a designer, but he works in Photoshop all
day and makes us build the pages. We’re pretty sure he
doesn’t even understand HTML. That’s not good
design, is it?

- - -
It seems almost cliché these days to be nostalgic for

technology from days past, but I must admit I am. My past
is one shared by almost everyone with whom I consider a
peer: early video games in elementary school, a Commodore
64 in junior high, and a Macintosh in college. I bring this
up because there was a sensation I felt the first time I used a
Mac in the dark basement lab at my alma matter. It was a
feeling of being disconnected and empowered at the same
time. I poked at the elegant icons with my mouse and
dragged windows around the screen. “Oh I get it. You don’t
write programs with this, you just use them!” I suddenly
realized that most people would want to use a computer to
simply get stuff done. Computers were tools. Very powerful
ones, at that.

So here we are, a decade later, facing an explodingly
popular World Wide Web. It’s disconnection and empow-
erment all over again. From the initial pit in your stom-
ach: “I can’t believe there’s so much here!” to the first
realization of participation: “I can add to it!” The Web
grabs us and draws us in.

The Web is everywhere now. The Web has infused itself
into our mainstream culture. URLs are becoming as ubiqui-
tous as toll-free 800 numbers—showing up on billboards,
matchbooks, and television sitcoms. The Web is a hobby.
The Web is big business. The Web is a medium for personal
expression, and a conduit for a commerce revolution.

It’s getting better and it’s getting worse.
What do I mean by that? Metcalf’s Law, named after

Bob Metcalf, the man who invented Ethernet, states that

ple of smart Web design, but how it fails to meet the basic
needs of your customers. The Web is post-cool now, you
slyly suggest. It’s time we build a site that pushes our com-
pany into a new medium, rather than dragging the baggage
of the old with us.

This book is not a reference manual or even a style
guide. Rather, it a mentor for Web designers or those wish-
ing to be, whispering in their ears during those meetings. It
embodies that nagging voice in the back of your heads
while sitting at the screen pushing the pixels around,
reminding us that there are now new rules and new ways to
break them. It is the college English professor that not only
taught you how to write, but helped you to recognize and
seek out elegant writing. “You know grammar, you know
how to spell,” she told you. “Now, let’s tear into the classics,
let’s dig down to the deepest etymologies—this is linguistics
for the sheer joy of language and story.”

The book is structured around the basic Web concepts
that so often get only a passing mention in the reference
books on designers’ shelves today. Yet these are the very
issues Web designers and developers deal with each day.

• How does our Web team work together—we’ve got
marketing writing content, designers laying out
pages, and engineers wiring all of it together. Is this
the right way to be structured?

• Do I really need to know HTML? Can’t I just get by
with a good authoring tool?

• How do I incorporate advertising effectively in my
site? Will we ever make a dime on all of this Web
investment?

• Everyone is talking about “personalization” and “one-
to-one” marketing, exactly what does that mean to
you when sketching out a site?

• Our site looks great, until the CEO gets a WebTV for
Christmas. Now our vacation is cut short while we
rethink our entire design strategy. What went wrong?

ASWD_001121.qxd 11/27/00 11:17 AM Page x

xiiiThe Art & Sc ience of Web Designxii

networks become more valuable as the number of people
using them grows. A computer with an email application is
worthless unless it’s somehow connected to another. Add
two more to the connection, and it doubles in value. Add
100 million more, and suddenly the world changes.

It’s obvious how Metcalf’s Law, when applied to the
Web, has made significant changes in the way we live,
work, and interact with one another. As a larger and larger
percentage of the world’s population comes online, the
value of the network skyrockets. New uses of the Web
emerge simply because there are so many people around.
The Web gets better as it gets bigger.

What is not obvious is how the Web is straining under
the load. I’m not talking about simple network architecture,
although that’s a significant concern for some. Rather, we
need to look at how this unbelievable popularization has
amplified some basic flaws in the design of our Web sites,
the software we use to reach them, and business models we
rely on to finance it all.

Ultimately, the solutions to many of the Web’s problems
are grounded in good design. I have spent the last five years
making Web sites for HotWired, one of the first commercial
publishers to focus its efforts exclusively online. These sites
have relied on basic industry standards, have been funded
through advertising, and have served a broad spectrum of
technically literate users. Along the way, I’ve worked with
some amazing designers, and have developed a few ideas on
how to embrace the limitations of technology and to make
a site successful. Applying these ideas on a large scale quite
possibly could solve some of the Web’s problems.

This is a book for Web designers, but it’s also a book for
anyone who wants to understand the Web from the inside.
What makes a good Web site? Where did the Web really
come from? Why does the technology work the way it does?
Am I even using it correctly?

We’ll get to these questions, but first, we all will need to
understand what Web design is. And to do that, we need
to start at the very beginning.

ASWD_001121.qxd 11/27/00 11:17 AM Page xii

[1]
The Web may be growing fast, but its foundation stretches back through years

and decades of electronic publishing history. In this chapter, we’ll look back at

how the intersection of traditional publishing and early databases influenced the

way the Web was built. Why is that important? Because we need to deconstruct

the basic philosophy of Web design: how the integration of structure, style, and

behavior form the basis of our thinking about development on the Web today.

Then, from the theoretical to the concrete, we’ll look at how that underlying

theory applies to the technologies that make up the Web, as well as the collabo-

ration of Web teams, and the interconnection of the people and the technologies

they use. Through that lens, we can look at today’s Web interfaces.

Chapter One

Foundations

The Web has function, it has interactivity, it
has behavior... and it is spreading like a
California brushfire fanned by winds of a new
networked economy.

ASWD_001121.qxd 11/27/00 11:17 AM Page xiv

Chapter One - Foundat ions 3The Art & Sc ience of Web Design2

recombine the results into new documents. The problem
reminded Charles of the frustration he had felt years ago,
sending dictated briefs over and over again to a secretary for
revision and retyping—an exceptionally inefficient process.

The rudimentary text storage systems of the time were
capable of storing documents and spitting them back out
again—while retaining the basic formatting encoded with-
in. But Charles found that storing the text in a database
(even if that database used cardboard media) was the easy
part—getting at the text and doing something interesting
with it was the hard part. At first, he considered stripping
all the text clean of any formatting at all, then retrieving it
using simple text searching algorithms. But what if you
wanted to do more compelling things than just find an
occurrence of a few words? What if you wanted to get just a
list of document subheads, or find all the documents written
by a particular lawyer, or on a particular legal precedent?

Charles faced a dilemma. How could he store the text in
a database so that it was both formatted for proper output,
but also could be queried in powerful ways? A search for a
solution was, in fact, a lesson in publishing history.

The History of Electronic Text
Historically, when a printed manuscript was given to a copy
editor for grammatical and formatting edits, the process

Charles Goldfarb liked to get people lost.
It was 1966. Two years out of Harvard, the young lawyer

was already bored with the frustrating redundancy of prepar-
ing briefs for the firm that employed him. To burn off some
energy, Charles would spend countless hours working on his
hobby: organizing Boston-area sports car rallies.

As “rallymaster,” he would plot courses for the roadsters
on maps, then convert the courses to a detailed set of
instructions. It was a game for Charles, and he enjoyed
encoding logic puzzles into his crib sheets. Instead of a sim-
ple list of instructions, he would add commands like “Repeat
the last six steps replacing ‘right turn’ with ‘left turn’.”

Eventually, a friend told Charles his routes were just like
computer programs. “Really?” he replied. “What’s a comput-
er program?” Soon, he found that IBM would pay him a
comfortable salary to write his logic-based instructions for
computers, rather than driving enthusiasts. Suddenly, if
you’ll excuse the pun, his career took a permanent turn.

By 1969, the excitement had worn off the thrill of
punch-card coding mainframes. Charles was beginning to
consider heading back to the courtroom, but before he did,
IBM offered him an interesting project: figure out how to
apply current computer technology to the practice of law.
The idea was to store legal briefs as electronic text in a
database, then let lawyers query that information and

1965
Ted Nelson coins the term “hypertext”

at the annual conference of the

Association of Computing Machinery

1968
Douglas Englebart demonstrates his

“Augment/NLS” hypertext system, including an

early mouse prototype and video conferencing

1969
Charles Goldfarb, Edward Mosher, and Raymond Lorie,

working at IBM, invent the Generalized Markup Lanugage

as a way of editing, sharing, and reusing electronic text

1967
William Tunnicliffe presents to the Canadian

Government Printing Office on the value of separating

content of documents from presentation

1969
First packets flow across the ARPANET, a

predecesor to today's Internet

1974
Bob Kahn and Vint Cerf publish paper

proposing basic Internet protocols

A Web Design Timeline

ASWD_001121.qxd 11/27/00 11:17 AM Page 2

Chapter One - Foundat ions 5The Art & Sc ience of Web Design4

a concept that would eventually find its way into all aspects
of publishing as well as disciplines like computer science.

Early computer word-processing applications followed a
similar evolution. Much like copyeditors adding formatting
codes, these tools processed text with specific markup. The
user was able to denote text with instructions that would
describe how the text should be presented: whether bold,
italic, big, or small.

While this may have been fairly interesting in an
abstract historical context, it was ground-breaking to the
handful of researchers like Charles Goldfarb in the late
1960s. They began to realize that using typographical con-
ventions in word processors was shortsighted. Rather, they
believed electronic text should be tagged with general
markup, which would give meaning to page elements much
like the markup codes traditionally shared between editors
and typesetters. By separating the presentation of a docu-
ment from its basic structural content, the electronic text
was no longer locked into one static visual design.

Charles experimented with storing his electronic legal
briefs in pieces, and labeling each piece of the brief based
on what they were, rather than what they should look like.
Now, instead of marking a chunk of text as being 36pt
Times Roman, he could simply label it as “Title.” The same
could be done for every other chunk in the document:

would include something called “markup.” In the case of,
say, a turn-of-the-century newspaper, an editor would scrib-
ble codes in the margins of a particular story that described
how it should look. Then the codes were interpreted by a
typesetter (the person who was responsible for putting
together the final page on the press). Headlines, for exam-
ple, would be marked with a shorthand notation describing
which typographical convention to use. Thus, the editor
might write something like “TR36b/c” and point to the first
line of text on a page, effectively telling the typesetter to
set that line as a headline in Times Roman 36 point bold
and centered.

Most publications, however, defined standards for each
individual part of a story and page. That way, the editor
wouldn’t need to write the same typographic codes again
and again. Instead, each page element could simply be speci-
fied by name. Not only did this save time, but it ensured
consistency across a publication. A newspaper, for example,
might have defined six different headline weights to corre-
spond to a story’s position on a page. The paper’s editor
could save time when doing the layout by tagging a story’s
first line of text with a standard notation like “HEAD3”. A
typesetter, encountering the notation, would look up the
code on a sheet listing the style standards, and format the
headline accordingly. This process is known as indirection—

1986
SGML, drived from Goldfarb's GML, is adopted

by the International Standards Organization

1989
Tim Berners-Lee begins work on his

World Wide Web project

1987
10,000

Internet hosts

1989
100,000

Internet hosts

1991
First draft of Hypertext Markup

Language (HTML) released on the net

1991
Gopher, a distributed online repository of data,

developed at the Univeristy of Minnesota

1984
Apple Macintosh computers ship, including HyperCard, a

graphical hypertext system for personal computers

A Web Design Timeline (continued)

ASWD_001121.qxd 11/27/00 11:17 AM Page 4

Chapter One - Foundat ions 7The Art & Sc ience of Web Design6

all be done with the same software, regardless of whether
you were sending out legal briefs or pages of a newspaper.
They dubbed their system the Generalized Markup
Language, or GML (which, incidentally, also encoded the
initials of the inventors for posterity).

And here’s the interesting part: GML was developed so
it could be shared by all electronic text. If there was a stan-
dard method for encoding content—the reasoning went,
then any computer could read any document. The value of
a system like this would grow exponentially.

The concept quickly spread from the confines of IBM.
The publishing community realized that by truly standardiz-
ing the methodology of GML, publishing systems worldwide
could be developed around the same core ideas. For years,
researchers toiled over the best way to achieve these goals,
and by the mid-1980s, the Standard Generalized Markup
Language, or SGML, was finished. The resulting specifica-
tion, known to the world as ISO 8879, is still in use today.

SGML successfully took the ideas incorporated into
GML much further. Tags could go far beyond simple typo-
graphic formatting controls. They could be used to trigger
elaborate programs that performed all sorts of advanced
behaviors. For example, if the title of a book was tagged with
a <book> tag, an SGML system could do much more than
simply make the text italic. The book tag could trigger code

author, date published, abstract, and so forth. When thou-
sands of briefs had been marked up with standard tags, you
could start to do some amazing things such as grouping sum-
maries of briefs written by a particular lawyer, or collapsing
a document down to a simple outline form. Then, when you
were satisfied with the final brief, you could print the docu-
ment by specifying a style sheet much like editors and
typographers did decades ago. Each tag was assigned a par-
ticular formatting style, and the document was produced in
a physical form. Updating, redesigning, and republishing
was a breeze. Charles was no longer bored. Technology and
publishing had intersected in a remarkably powerful way.

Charles Goldfarb continued his work at IBM into the
early 1970s with Edward Mosher and Ray Lorie. As they
researched their integrated law office information systems,
they developed a system of encoding information about a
document’s structure by using a set of tags. These tags fol-
lowed the same basic philosophy of representing the mean-
ing of individual elements, with the presentation then
applied to structural elements rather than the individual
words. The team started to abstract the idea. Rather than
develop a standard set of tags, why not just set up the basic
rules for tagging documents? Then every document could be
tagged based on its own unique characteristics, but the
searching, styling, and publishing of these documents could

1992
1,000,000

Internet hosts

1997
Version 4.0 of both Navigator and Internet Explorer

include support for “Dynamic HTML” allowing

limited progression from static pages

1994
Netscape releases its first version of

a graphical Web Browser

1993
Marc Andreesen and Eric Bina develop one of

the first graphical browsers, Mosaic, at the

University of Illinois

1995
10,000,000

Internet hosts

1995
Microsoft releases

Internet Explorer

1996
Cascading Stylesheets (CSS)

becomes a W3C Recommendation

1998
Extensible Markup Language (XML)

becomes a W3C Recommendation

2000
75,000,000

Internet hosts

A Web Design Timeline (continued)

ASWD_001121.qxd 11/27/00 11:17 AM Page 6

Chapter One - Foundat ions 9The Art & Sc ience of Web Design8

NeXT server, and began distributing the software.
Popularity grew as clients, or “browsers,” were developed for
other computer systems. By 1994, traffic on the Web had
surpassed all other forms of Internet traffic and new
browsers like Mosaic and Netscape’s Navigator had entered
the public conscience. The Web was alive.

Part of the incredible growth of the Web has been
attributed to its simplicity—especially the ease of creating
documents for reading in browsers. Berners-Lee knew that a
basic document format would be required for passing infor-
mation back and forth between computer systems. His first
effort, the HyperText Markup Language, or HTML, closely
followed the basics of SGML, but with a few differences. He

Virtually any historical account is sur-

rounded by a certain amount of contro-

versy. Seldom are all historians in unani-

mous agreement as to how events

actually transpired, who did what when,

and what it all means. It should come

as no surprise, then, that the birth of

electronic publishing is equally rife with

debate. Robin Cover, who maintains a

repository of SGML resources on the

Web at www.oasis-open.org/cover/, pro-

vides links to a number of different

interpretations of what was happening

in the late 1960s. He also provides the

following introduction:

It appears certain to me that at

least these three ideas were common

already in the 1960’s, often within dis-

tinct communities which rarely talked to

each other: (a) the notion of separating

“content and structure” encoding from

specifications for [print] processing; (b)

the notion of using names for markup

elements which identified text objects

“descriptively” or “generically”; (c) the

notion of using a (formal) grammar to

model structural relationships between

encoded text objects. Some of these

intellectual streams eventually flowed

into the standards work where they

took a particular canonical shape, and

some important intellectual work devel-

oped outside the standards arena. How

many of the “fundamental” notions ...

were (first, best) articulated within

efforts that may be reckoned as belong-

ing, genetically or otherwise, to “the

beginnings of SGML” will probably

remain a matter of personal interpreta-

tion rather than of public record.

Revisionist History?

in the publishing system to look up an ISBN number, and
then create a bibliographic reference including the author,
publisher, and other information. SGML could also be used
to generate compound documents, which are electronic docu-
ments that are pulled together automatically from a number
of different sources. A document no longer needed to be a
collection of paragraphs, but could include references to
information in a database that could be formatted on the fly.
Consider the statistics on the sports page of a newspaper;
raw data flows through formatting rules to automatically
generate the daily page; or imagine a catalog that always
printed the current prices and inventory data from a ware-
house. Electronic publishing began to come of age.

As a standard, SGML was a remarkable accomplish-
ment. Getting thousands of companies, organizations, and
institutions to agree on a systematic way of encoding elec-
tronic documents was revolutionary. The problem, however,
was that in order to be universally inclusive, SGML ended
up being massively complicated. So complicated, in fact,
that the only real uses of the language were the largest con-
stituents of the standards group: IBM, the Department of
Defense, and other cultivators of massive electronic
libraries. SGML was a long way away from the desktops of
emerging personal computers at the time.

The Birth of the Web
Fast forward to 1989. A researcher named Tim Berners-Lee,
working at the European Particle Physics Laboratory, made
a proposal for a simple hypertext system. Hoping to connect
the distributed work of physics researchers, Berners-Lee
developed a prototype system for linking information
including three critical pieces: a way of giving everything a
uniform address, a protocol for transmitting these linked
bits of information, and finally a language for encoding the
information. Working with fellow researcher Mike Sendall,
Berners-Lee created both a server for storing and distribut-
ing information, as well as a client application for browsing.
They called this system “Worldwideweb,” set it up on a

ASWD_001121.qxd 11/27/00 11:17 AM Page 8

Chapter One - Foundat ions 11The Art & Sc ience of Web Design10

All Structure, No Style
So let’s review this progression. Historically, editors would
add formatting instructions for the typesetters, who would
lay out the physical pages of a publication based on those
rules. As a method of shorthand, style rules would be devel-
oped for each piece of a publication, and then editors sim-
ply would mark each section of a document with its seman-
tic label. As publishing moved to computers, those codes
were added electronically to text to describe how a comput-
er would do the formatting. Eventually, SGML was created
as a standard way of encoding this information, but it was
too complicated for everyday usage. Today’s World Wide
Web uses a small and very simple application of SGML
dubbed the Hypertext Markup Language (or HTML),
which defines only a limited number of codes that any com-
puter can present.

In the historical tradition of authoring, editing, and
designing information, the Web browser became the auto-
mated typesetter for a standard set of general document
codes. But you’ve probably already noticed two problems:
HTML was only designed to encode structure—leaving the
browser to interpret style, and HTML had only the most
limited set of structural tags. What was needed was a way
to include style rules, and a way to extend HTML to
include any structural element and still maintain this uni-
versal standard.

In an ideal world, the Web would have progressed in
much the same way that GML did in the research labs of
the early 1970s. Software engineers, publishers, editors, and
graphic designers would have collaborated on the best possi-
ble method for advancing the state of Web technology. So,
once the popularity of the Web was obvious, the next few
steps easily could have been achieved—HTML could have
been extended in a clean way to accommodate new and dif-
ferent types of documents. Then a powerful style language
could have been added, giving designers the typographical
and layout control to which they were accustomed. Finally,
HTML could have taken a back seat to allow a simple

knew that for his proposal to succeed, it had to embody the
following characteristics:

• Simplicity: Keenly aware of the incredible complexity
inherent in SGML, Berners-Lee opted for a tiny sub-
set of tags for describing a document, and didn’t both-
er with a method for describing a document’s styles.

• Universality: He imagined dozens, or even hundreds,
of hypertext formats in the future, and smart clients
that could easily negotiate and translate documents
from servers across the Net. While this vision may
not have become reality, the fact remains today that
HTML and its derivatives can be read on virtually
any computer, and on many devices like phones and
hand-held units.

• Degradability: While maintaining a simple system, as
well as one that worked across the diversity of the
Internet, Berners-Lee realized that HTML would
eventually have to expand. To accommodate man-
aged growth, he added a final axiom regarding new
versions: they must never break older releases of the
language. So as the nascent Web evolved, it would
never require upgrades. New versions would simply be
embellishments of old versions.

Thus, the first version of HTML was created with a few
basic elements: <H1> through <H6> denoting headlines and
subheads, <P> for paragraphs, for lists, etc. Since there
was no associated presentation information, any browser—
running on any computer system—could interpret this basic
collection of tags and display them in the most appropriate
way. High-end workstations could present typographically
rich documents on color monitors while simple terminal
emulators could offer a stripped down version that matched
the limited capacity of the device. Suddenly, everyone
could exchange electronic documents, and they could do so
in an incredibly simple, albeit constrained, way.

And suddenly, they did.

ASWD_001121.qxd 11/27/00 11:17 AM Page 10

Chapter One - Foundat ions 13The Art & Sc ience of Web Design12

overnight became the most popular browser on the Web.
With this popularity came a demanding audience. The Web
was amazing, but it sure was limited. Why, even the sim-
plest desktop publishing software 10 years ago allowed some
typographical control. Yet Netscape’s browser was limited to
that simple handful of HTML tags developed by Tim
Berners-Lee just a few years back. “Give us more control!”
demanded the users. “Our pages are boring!”

Netscape responded, and did so quickly. Sure, the W3C
was focusing research on how to best add advanced stylistic
control to the Web, but that could take forever. Netscape
needed to innovate immediately, and did so by introducing
a set of new tags that gave their users a least a little of the
power they demanded, but without the learning curve of a
whole new technology.

Thus was introduced the tag, and with it the
capability to control the appearance of an HTML document
by setting typographical attributes like the font face, size,
and color. Web sites, which were now becoming vehicles for
corporate communication and even electronic commerce,
could now give their pages a look and feel unique from the
competition. “More!” demanded Web designers. And more
they got. Netscape, and newly awakened corporate rival
Microsoft, began adding as many proprietary tags and tech-
nologies to their browsers as they possibly could. Almost
overnight, the Web was a rich landscape of new ideas, new
looks, and experimentation.

HTML continued to grow with new, powerful, and
exciting tags. We got <background>, <frame>, , and of
course, <blink>. Microsoft parried with <marquee>, <iframe>,
and <bgsound> and started competing for room in the specifi-
cation. And all this time, the W3C furiously debated some-
thing called HTML 3, a sprawling document outlining all
sorts of neat new features that nobody supported (remember
<banner> and <fig>?). It was now 1995, and things were an
absolute mess.

Something needed to give. If things kept up the way
they were going, Netscape and Microsoft would eventually

framework to emerge, letting anyone develop any set of tags
they deemed necessary with browsing software smart
enough to discover new tag sets, understand them, and dis-
play them in appropriate ways.

Actually, this has been happening behind the scenes of
the Web over the course of the last few years. The World
Wide Web Consortium, or W3C, is a group of industry
experts representing the many disciplines of electronic pub-
lishing and distribution. And while the Web has been mov-
ing full speed ahead into the mainstream fabric of our
world’s culture, this group of researchers has been plotting
its technological course.

But there is tragedy to this idyllic world of the Web. As
the W3C worked through the mid-1990s to build a perfect
group of compatible technologies, the Web itself spread like
a California brushfire fanned by winds of a new networked
economy. Companies went public and quadrupled their
value overnight based on the simple idea of passing HTML
documents back and forth.

Look, for example, at the addition of images to the
Web. Early browsers were simply text-based, and there was
an immediate desire to display figures and icons inline on a
page. In 1993, a debate was exploding on the fledgling
HTML mailing list, and finally a college student named
Marc Andreessen added to his Mosaic browser.
People objected, saying it was too limited. They wanted
<include> or <embed>, which would allow you to add any
sort of medium to a Web page with the much-touted con-
tent negotiation used on the client. That was too big a
project, according to Marc. He needed to ship ASAP. He
added to his browser. It would be years before media
would be included in a page using <embed> or <applet> or
<object> tags; and, it would be years before the topic even
would resurface again.

Andreessen packed up and headed west to the Silicon
Valley, where he and a number of other talented developers
created the Netscape Communications Corporation.
Released in October of 1994, their software almost

ASWD_001121.qxd 11/27/00 11:17 AM Page 12

Chapter One - Foundat ions 15The Art & Sc ience of Web Design14

vendors, the Web would spin out of control into a world of
proprietary, inoperable versions of HTML. Small, formal
working groups formed (known as editorial review boards),
consisting of member companies and invited experts. These
groups worked to find common ground among the popular
browsers, and then to extend the specification in a way
everyone could agree upon. Since the groups were made up
of the people who would be shipping the browsers, the
speed at which the new specifications could react began to
fall in line with the releases of new software. HTML 3.2
and the subsequent version 4.0 are successful examples of
this strategy at work.

But can you see the shift? It was subtle, but did not go
unnoticed by the true HTML purists of the day—especially
those with roots reaching back into the depths of SGML.
Suddenly, the simple and pure Hypertext Markup Language
wasn’t a markup language at all, but a collection of presen-
tation hacks that only barely worked from browser to brows-
er. Standardization was losing ground. But more important-
ly, the tags themselves were losing meaning. What did
 say about the text that it was marking up? Nothing
about its meaning—just some presentational clues for the
browser to use when rendering.

Conceptual Model
Well, great. So the Web came from a bunch of obsessive
researchers interested in creating searchable databases out
of simple pages of text. What could that possibly have to do
with my Web site? Can we please just get to the part about
cool graphics and fonts?

Unfortunately, it’s not that easy. Before we can decide
what to do, we need to understand why to do it.

When I first started developing Web sites, it was for
Wired magazine’s early commercial Web venture
HotWired.com. This was early in 1994, and none of us real-
ly understood much about how the new medium really
worked, or what would work in the new medium, for that

have two completely proprietary versions of HTML, but
with no way of supporting the utopian vision of content
negotiation. Instead, people would be forced to choose one
browser or the other, and surf content specifically created
for that platform. Content providers would have to either
choose between vendors or spend more resources creating
multiple versions of their pages.

There are still vestiges of this lingering on today’s Web,
but not the nightmare scenario that was anticipated. The
HTML arm of the W3C changed course and started collect-
ing and recording current practice in shipping browsers,
rather than designing a future, unattainable version of the
language. The consortium began a shift from proclamation—
developing standards and handing them down from on
high—to consolidation, providing common ground from
which the industry could grow. The history of HTML is a
perfect example of this transition.

Version 2.0 of the hypertext markup language was very
much a statement from the W3C to the effect that, “This is
how things are going to be.” And, at the time, it made per-
fect sense. The Web didn’t have nearly the reach it does
now. Back then there were few Web browsers (and no com-
mercial ones), and the users of those browsers and develop-
ers of content realized that this new medium was a moving
target—things would change, and investment in content
could be wasted in six months. That was fine, for a while.

Then came HTML 3. Coinciding with the explosion of
the Web as a commercial force, this version attempted a
massive extension of the language. While this was being
undertaken, a quickly-growing company named Netscape
was busily responding to its customers’ demands by adding
whatever it could to HTML, virtually ignoring the academ-
ic standards work that was happening at the W3C. Again,
this is understandable (although very regrettable in hind-
sight). As a result, the HTML 3 specification never really
made it pass the draft stage.

Soon, the consortium realized that unless it began to
document current practices of the big commercial browser

ASWD_001121.qxd 11/27/00 11:17 AM Page 14

Chapter One - Foundat ions 17The Art & Sc ience of Web Design16

The Web, however, has its own vocabulary, and to add
more detail to our conceptual model, we’ll adopt it. The
words, pictures, and code categories translate to the elec-
tronic publishing model with the categories of Structure,
Presentation, and Behavior. So in other words, in the Web
publishing world, we can extend the model to:

• Presentation: how that organization is presented
visually to users

• Structure: how something is organized and optimized
for ease of use and understanding

• Behavior: how those users then interact with the
product and the product’s resulting behavior

As we examine the interplay between these influences,
we’ll see that they not only represent a conceptual model
for the Web at large, but for the pages and sites we’re build-
ing today, as well as for the collaborative teams that work
on them.

Code

Words Pictures

matter. So we looked to the traditional process that we
knew: designing and developing magazines.

At the time, I was working with Barbara Kuhr, one of
the founders and creative directors from Wired magazine.
She insisted at the time, and still does, that developing a
magazine was not a linear process: you simply didn’t take
stories from writers, pass them through editors, dump them
on designers, and ship it all out to be printed. Rather, it was
an iterative process. Editors and designers had to be collab-
orative with one another to ensure success.

“Words and pictures,” she would say, “can never be
separated.”

Of course, she wasn’t suggesting that all designers only
concerned themselves with photos and illustrations—just as
editors and writers are more than mere wordsmiths. The
statement is a metaphor for how the interaction between
content and presentation are intimately bound. It is a sim-
plification of the intense collaboration necessary to succeed.
The only way to successfully communicate through a print-
ed page is to tie together the stories being told with how
they’re being presented in such a fundamental way as to
achieve something greater than the sum of their parts. And
when you look at the amazingly successful work archived in
Wired magazine, you can see this theory played out in page
after page of stunning work.

How then could we apply this to the Web? At first
glance, it seems obvious: the Web, too, is an interplay of
words and pictures—structured content and visual presenta-
tion. But it is also more than that. The Web adds a third
angle to the metaphor—that of behavior. Web sites and
Web pages are things we use and interact with in a much
more participatory way than a paper magazine. A Web site
can offer the ability to solve problems in such a way that we
never had imagined. We can buy airline tickets or manage
stock portfolios or learn JavaScript or read the morning
news and check the weather forecast.

Thus developed a model for Web development: the col-
laboration of Words, Pictures, and Code.

ASWD_001121.qxd 11/27/00 11:17 AM Page 16

Chapter One - Foundat ions 19The Art & Sc ience of Web Design18

ASCII-text document? Words may be the funda-
mental piece of communication, but visual design
can’t be discounted for its emotional impact. Plain
text just doesn’t cut it.

• Text is not engaging. Look beyond graphic design to
multimedia—streaming audio, video, and the inter-
activity of other binary objects like Flash animation
and Java. Text may do a fine job describing things,
but at some point you are probably going to want to
show what it is you’re talking about. That’s the point
where you leave text behind.

• Text is not quite universal. Ever wonder what the
acronym ASCII actually stands for? “American
Standard Code for Information Interchange.” That’s
right, our universal text format—shared by comput-
ers around the globe—is based on an American stan-
dard. Ever try to do Kanji in a text doc? Good luck.

So why the emphasis on text? Again, there are a few reasons:

• Text is (sort of) universal. As I just mentioned,
ASCII may come from just one country, but the fact
remains that virtually every computer system in the
world is capable of understanding a .txt file in a pret-
ty fundamental way. Some day, ASCII will be
replaced with UNICODE, a system for encoding tens
of thousands of international characters into text
files. But for now, at least we can exchange basic doc-
uments with virtually anyone in the world.

• Text is fast. The bytes you find in a text document
are about as stripped down as possible. Compare a
text file to a heavily formatted Microsoft Word docu-
ment, and the size difference will be hefty. Compare
a text file to a streaming video file, and you’ll start to
see orders of magnitude.

• Text is machine-readable. This is the key. The con-
tents of a text file can be read into a computer, and
they can easily be “understood” for the words that

Structure
Let’s start with HTML as our basis for discussing struc-

ture. We’ve already seen where it came from—humble
beginnings in early database systems and its evolution
through SGML. And we’ve seen why its goals of simplicity
and forgiveness made it so rapidly popular. But how can
something so pervasive come from something so simple?

The answer lies in the basic building block of the Web: text.
As far back as you look in the history of the Web, plain

old text has been the lingua franca. I’m referring to the sim-
ple .txt files on your computer—like the READMEs that
come with new software (also, as a matter of fact, the for-
mat of the HTML files we use to build our Web sites). But
now, with all our modern applications and emphasis on
graphics and visuals, isn’t text outdated? For example:

• Text is visually limiting. Think about it: How
many stunning presentations have you witnessed?
And how many of them were done by someone
standing in front of a video projector showing an

Code

Words Pictures

BEH
AVIOR

S
T
R
U
CTURE PRESEN

TA
TI

O
N

ASWD_001121.qxd 11/27/00 11:17 AM Page 18

The Art & Sc ience of Web Design20

It can be tempting to bypass the limita-

tions of HTML for the visually stunning

impact of graphics. By imprisoning parts

of your pages as graphics, you can

achieve a variety of effects beyond the

rather rudimentary capabilities of

today’s browsers. Headlines can come

alive in any typeface you desire. Text

can rotate and show off drop shadows,

and on and on and on.

But is it really such a good idea?

For a perfectly clear example of the

power of text, we can turn to the Alta

Vista Search Engine. One of the interest-

ing features the service offers is the

capability to translate Web pages into

other languages. Thus, if you find an

interesting looking page written in

Spanish (and you don’t happen to habla

Español), you can let the Babelfish

translator convert it to English.

That is, if the page is actually still

text. The engine can’t get to the words

found in graphics, so all those fancy

headlines are going to stay elusive.

Bummer, considering that’s often the

most important content on the page.

And those sites that create their content

as a graphic or Flash animation? Well,

you’re completely out of luck.

Translating the Web with Babelfish

The Alta Vista translation service, Babelfish, will convert Web pages between a

number of different languages... if it can read them.

they are. Think about spell-checking a file in a word
processor. How does the computer know which
words to flag? Simple pattern matching on the val-
ues of the characters it finds in the document.
Compare that to the computationally intensive task
of, say, recognizing the words in an audio file. You
could do it, but it would be a lot harder than just
zipping through a text file.

Thus, the fact that HTML is derived from plain text
means that it inherits all the computer-enabled benefits of
ASCII. Computers can manipulate the text. We can create
programs to do all sorts of wonderful things to our content:
We can index it and search it, we can translate it into other
languages, and we can copy and paste it. The possibilities
are, quite literally, endless.

None of these things are possible when you leave text
behind. In traditional print design, for example, it is not
uncommon to take text from a layout program like
QuarkXPress and drop it into a graphics application like
Photoshop. By turning the text into a graphic, designers can
manipulate it all they want to achieve the desired effect.
They can stretch and rotate and embellish until a headline
or drop cap is perfect, and then import it back into their
documents. But what if we do this on the Web? The words
in the headline, as a graphic, lose their meaning. The com-
puter can no longer distinguish them as words—it sees only
a graphic. The machine-readable benefits of text are gone.

With a foundation of plain text, HTML takes it a step
further into structured text. If machine readability is an
admirable goal, then structure applied to simple text is the
proverbial Holy Grail. Think about it: If a computer can
process a file, adding structure by means of tags can provide
clues to what that text actually means. For example, take
the following bit of text:

The story was about Microsoft and Bill Gates.

21

ASWD_001121.qxd 11/27/00 11:17 AM Page 20

Chapter One - Foundat ions 23The Art & Sc ience of Web Design22

Which is more valuable? Obviously, the second allows us
far more opportunity to disambiguate the content. The
tag may render the company’s name in boldface type, but it
tells us nothing about the content. The <company> tag, on
the other hand, gives us a clear idea of what is being refer-
enced, but says nothing about how our browser should dis-
play the word. Wouldn’t it be great if we could get the best
of both worlds, adding rich metadata while maintaining
control of the visual presentation?

Luckily, that is exactly how HTML was designed.

Style
As we discussed earlier in this chapter, HTML was never
intended to address the presentation of a document. Rather,
the markup language was created to merely specify what
each part of a document was. And, as we’ve seen, it has
been quite successful at that. In fact, where HTML was
extended to try to encompass things like fonts and layout, it
has largely been unsuccessful.

How, then, are we to do any sort of visual design on our
pages and sites?

Enter Cascading Style Sheets.
“Trying to design with HTML,” says my old friend

Steve Mulder, “is like trying to paint a portrait with a
paint roller.”

And he is right. Steve wrote a book on Cascading Style
Sheets (CSS) a few years back, pining for the day when we
would have complete control over the visual presentation of
our Web pages. Browser compatibility and vendor priorities
being what they are, we’ve only recently seen a critical mass
of users upgrading to browsers that just barely support
enough CSS functionality to be useful. But the theory
behind CSS is important.

CSS is a simple, yet powerful text-based standard for
specifying how our content should look in browsers. While
HTML excels at telling us what a document has in it, CSS
steps in and tells us exactly how it should appear. I won’t go
into the details and syntax of how the technology actually

What can a computer do with the line above? Well, as
we’ve seen, it can do any number of transformations. It can
be spell-checked, searched, translated, converted to capital
letters, or printed in green. But consider the following:

<p>The story was about

<company website="http://microsoft.com"

symbol="MSFT">Microsoft</company> and

<person title="President"

employer="Microsoft">Bill Gates</person>.</p>

Now consider how easy it would be to programmatically
manipulate the text. Not only can I do all the things we
could do to the previous example, but I can add even more
value. I can look up the current stock price of the company
mentioned. I can build a link to the company’s home page
on the Web. I can link to any biographical information I
may have on Mr. Gates. I can search this text, and any
other text we have, and aggregate all the officers of public
companies. And the list goes on and on.

We’ve just added a very powerful feature to our text—
something called metadata, or information about informa-
tion. The metadata in the tags is not intended to be dis-
played as part of the sentence but rather as embellishment
and annotation of the sentence. It is adding value. It is
allowing us to reference parts of our content.

These are structural tags. They talk about the semantics
of a document and add metadata so that we can manipulate
our content. Others, purely presentational tags, offer none
of these benefits. Think for a second, about the difference
between these two examples:

The story was about Microsoft and Bill Gates.

and

The story was about <company>Microsoft</company>

and Bill Gates.

ASWD_001121.qxd 11/27/00 11:17 AM Page 22

Chapter One - Foundat ions 25The Art & Sc ience of Web Design24

Look at the shift here, though. Our presentation of the
paragraph is associated with the actual paragraph by name
only, not location. That means that we can change the
appearance of our paragraphs—yes, all the paragraphs in our
document at once—by editing one line of our style sheet
while never touching our content. Add the fact that our style
sheet can be linked as a separate document and linked to
multiple pages across our Web sites, you can start to see the
amazing change. Edit one style declaration, and you change
the look and feel for an entire site.

See the connection? All of this is built on a model that
dates back hundreds of years to the communication and col-
laboration between editors and typesetters—little style
notes in the columns of copy, requesting a particular for-
matting. Yet we can harness this power of using text files
and browsers. Our presentation and structure are both pow-
erfully joined and valuably separate.

Behavior
The Web, though, is much more than a metaphor of words
and pictures. The Web has function; it has interactivity; it
has behavior.

These qualities, in fact, are what sets the Web apart
from other media—from print design, or film, or even ani-
mation. In the coming chapters, we’ll touch on many
aspects of interactivity and behavior, and particularly how it
affects design and our approach to it.

This area, in particular, is where the boundaries between
the disciplines of words, pictures, and code get fuzzy. Where
do we draw the line when, say, we need our pages to main-
tain the look and feel of a brand experience, but still func-
tion as an e-commerce application? When do designers stop
worrying about color choices and page layout, and start ana-
lyzing the tasks and actions that lead to successfully pur-
chasing of a product, or executing a stock trade, or perform-
ing a search, or downloading music?

But there are more ways in which interactivity intersects
with design. Even the most basic of design decisions start to

works, see the sidebar Getting Stylish for a variety of
resources to help you with that.

The true power of CSS lies in the power of abstraction.
Put simply: keeping your content separate from its presenta-
tion is a valuable strategy. Here’s how it works.

When you create an HTML document, you add tags that
describe the contents of the document to the computer. By
adding a style sheet, you can also tell the browser how each
tag should be rendered. You are, in effect, telling the brows-
er to ignore the default visual appearance of each element
on your page.

“Go through my document and set every paragraph in
the font family Verdana. And while you’re at it, make it
9-point with 16-point leading. Also, half-inch margins
would be nice.” And thus you start your conversation with
the browser, informing the browser how you want your
pages to display. This instruction, by the way, would look
something like this:

P {font: normal 9pt/16pt Verdana; margin: .5in}

Cascading Style Sheets should be part

of every Web designer’s vocabulary.

Here are a few resources that can help

you with the basics:

Mulder’s CSS Tutorial

Brought to you by Webmonkey, a Web

developer resource, this collection of les-

sons will help you understand everything

you need to know about CSS basics.

http://webmonkey.com/authoring/

stylesheets/

Webreview’s CSS Compatibility Guide

An in-depth look at how well the

browsers are doing at CSS support.

Includes bugs and inconsistencies across

platforms and versions, as well as a

“leader board” that ranks the browsers.

http://style.webreview.com/

Cascading Style Sheet Specification

From the horse’s mouth, so to speak. A

collection of resources and technical

specifications set out from the World

Wide Web Consortium.

http://www.w3.org/Style/CSS/

Getting Stylish

ASWD_001121.qxd 11/27/00 11:17 AM Page 24

Chapter One - Foundat ions 27The Art & Sc ience of Web Design26

A good Web page, of course, will be a solid blend of
presentation, structure, and interactivity. Put simply, the
ultimate goal of a successful Web site is a collaboration of
design and editorial content with interface functionality
and a solid backend system. Good design is much more
than decoration, just as well-planned architecture will take
a confusing hierarchy of data and guide an audience
through layers of information to the nuggets they need.
This tenuous balance is invisible to the user when done cor-
rectly, and painfully obvious when askew.

That’s the expression of content on the Web. Couldn’t
you use the same formula for approaching a project in the
first place? Building a team for developing a Web project is
nearly identical to building the project itself. Carefully
matching the disciplines of design, content, and program-
ming—and managing that balance—can be as difficult as
building the end product.

Case in point: When I was working with the design team
on the first version of the HotBot search engine, we faced
unique circumstances. The group was part of a larger devel-

Code

Words Pictures

EN
GINEERS

A
R
C
H
ITECTS DES

IG
N

E
R

S

get tangled in complexity on the Web. The painfully real fact
that the browsers used by your audience are varied and incon-
sistent will force you to develop a design strategy that includes
a healthy dose of programmatic code in your design. The size
and scope of Web sites, as well, are growing at an insane clip.
The only solution has been to develop systems that generate
Web pages from databases using templates. Imagine the vari-
ables: you don’t know which browser or what content will
show up in the interfaces you’re trying designing.

And that’s just the beginning. There is an onslaught of
new technologies and innovations hurling through cyber-
space every day. How can we keep up?

We probably don’t have to. But we do need to know the
possibilities and limitations of our new medium. And we
can get help. We can collaborate.

From Code to Teams
You can tell when the interconnectivity among the words,
pictures, and code of a Web site are out of balance. We’ve
all seen Web sites only a designer could love: chocked-full
of artistic touches and eye candy. Or, for that matter, pages
so focused on pure information retrieval that surfing them is
as exciting and entertaining as waiting in line at the post
office. These sites may well suit their intended audience and
justify their existence, but they appear to have been created
in a vacuum.

Imagine, for a moment, two Web sites with two com-
pletely opposite approaches to delivering content online.
One displays an artist’s portfolio through a slide-show pres-
entation. The interface offers you a linear path through a
series of full-screen photographs. The other is a vast data-
base of, say, information on airplane parts arranged hierar-
chically and coded by serial number. Each site has a very
specific purpose and audience. Each takes a radically differ-
ent approach to the organization and presentation of infor-
mation on the Web. Yet a common thread ties sites like
these together.

ASWD_001121.qxd 11/27/00 11:17 AM Page 26

Chapter One - Foundat ions 29The Art & Sc ience of Web Design28

Sure, you’re thinking, that’s fine for the big Web site of some
huge corporate interest, I just want to build my home page.

That’s the point. Thinking like a development team,
even if you are a team of one, is the right place to start
when you’re approaching a new project, no matter what the
scale. Rather than just throwing together a handcrafted
exhibit of art or a structured presentation of data, step back
and study the endeavor from all aspects of development.
How does interactivity play a role? What is the aesthetic
quality of the information? What are the goals of your users,
and how can you help them be successful?

You can begin thinking like a coherent development team
and the choices you make will be grounded in solid answers,
rather than the assumptions you had when you started.

Looking Ahead
In the coming chapters, we’ll examine all three angles of
the Words-Pictures-Code model. We’ll see how stylistic
conventions are being developed to increase the Web’s ease
of use. We’ll look at how structural integration of large-
scale Web sites is being developed and exploited. And, we’ll
examine the emerging discipline of dynamic design—both
in interfaces and across Web sites—that encompasses
behavior and interactivity.

All of this means nothing, of course, without the collab-
oration among those who excel at the disciplines I’ve intro-
duced. This collaboration—communication, really—is
without exception the most critical factor in the success of
a Web project and the resulting product. Without it, you’ll
just be practicing.

opment team at Wired Digital, and we were building this
Web application using licensed technology from a company
called Inktomi. The problem, of course, was in collabora-
tion. Inktomi had remarkably talented engineers, program-
mers, and computer scientists who had built its technology.
We, on the other hand, were developing interfaces, planning
a marketing campaign, and setting up a production environ-
ment. We had a series of planning meetings, thought we
understood each other, then went off and built our respec-
tive chunks of the search engine. Inktomi tackled the back-
end index; we focused on the front-end design. When it
came time to wire them together, well, you can imagine
what happened. Designers scratched their heads as engineers
tried in vain to explain why our solutions would not work
with their technology. Back to the proverbial drawing board,
this time with much tighter communication.

The converse has been true as well. I can remember
reworking countless interfaces after a designer, working in
Photoshop, handed off an interface to a production manag-
er tasked with creating the HTML representation. Without
fail, the HTML guru would come back begging for changes,
while the designer demanded perfection for the work of art
that was the interface.

The solution, of course, is intimate collaboration
between developers, designers, editors, architects, produc-
tion gurus, marketing managers, the sales team, and every-
one else who touches the Web site.

Right, I know, not likely. But if you use this model of
structure, presentation, and behavior as a foundation for
how we build our teams and manage the development
process, then at least you have a head start.

Web teams are inherently interdisciplinary. Web design-
ers may be domain experts in their corner of our triangle,
but the more they can branch out—the more they can
approach the behavior and structural needs of a design—the
easier success will be. This communication, and ultimately
translation between disciplines, is critical.

ASWD_001121.qxd 11/27/00 11:17 AM Page 28

Not too long ago, it was easy to make assumptions about Web audiences.

Everyone who was using the Web back then was creating the Web, as well. We

built interfaces assuming that. However, as the Web quickly grew, the sophisti-

cated users became the one percentile, and designers had to stop relying only on

experimentation with interfaces and concentrate on building sites that were sim-

ple and consistent. Impatient users, it turned out, weren’t interested in learning

new and different navigation schemes every time they happened across a new

site. This chapter explains how those contexts have developed and how you can

exploit them on your site while still maintaining an edge. Of course, there’s still

a lot of experimentation going on with Web interface design, and something

called Pattern Language design will help us embrace it.

Chapter Two

Interface
Consistency

To dismiss basic contexts such as link colors, page
layouts, navigation systems, and visual hierarchy
as “boring” or “pedestrian” is akin to laughing at
a car’s steering wheel as unimaginative.

[2]

ASWD_001121.qxd 11/27/00 11:17 AM Page 30

The Art & Sc ience of Web Design32

Mark Hurst calls himself an “Ease of Use Evangelist.” The
goal of his company, Creative Good, is to make the World
Wide Web easy to use for as many people as possible (while
making his clients more money, of course). By way of intro-
duction, he offers a compelling list of hurdles the average
person must negotiate simply to get started using the World
Wide Web. Despite every effort of software and operating
system developers, it is clearly a daunting task. According
to Hurst, the path to the Internet looks something like this:

Imagine knowing nothing about computers—at all.
You’re standing before rows of gray boxes and monitors at
the local consumer electronics superstore as an anxious
sales associate hovers nearby, eager to send you home
with the perfect—or at least most expensive—computer
system he can.

So you make a choice, based on some combination of
your intended uses for the contraption—probably some mix
of managing your finances, educating the kids, playing some
games, and, of course, accessing the Internet.

Once home, you unpack the cartons, and follow the
thick instruction manual step-by-step through the installa-
tion of your new hardware. This plugs into that, this CD-
ROM needs to go in first, followed by that one. Finally, by
some twist of fate, you managed to get the all the combina-
tions right, and you’re greeted with a “virtual desktop” filled
with icons and menus and a world of other possibilities.

But wait, says Hurst, there’s more. Even though you were
able to compare the features of all the systems on the mar-
ket, and get your particular model home and working, you
have yet to crack the operating system. There is even more
to learn here—from the relatively simple task of getting a
word processor installed to write letters, to the more
obscure chore of configuring device drivers sufficiently to
allow the eventual printing of that letter.

But let’s skip over that for the moment. Our task at hand
is surfing the Web.

If you thought the operating system was difficult, wait
until we try to get that OS to talk to a network of other

Chapter Two - Inter face Consistency 33

computers. It’s a tenuous balance between hardware, soft-
ware, and the rest of the world. On top of that, you need to
do more comparison shopping, and eventually settle on a
Internet Service Provider. Got that? Good. Modem dials?
Great! Connection established? Fantastic.

Now on to the Web browser. Microsoft or Netscape?
What’s the difference? What’s a URL? What’s a bookmark?
DNS error? 404 - File not found? What’s going on? Where
am I? Who exactly has my credit card number?

Ouch.
The Web is hard. Our average new computer user has

just gone through a remarkably difficult experience and has
somehow managed to get to the front door of your fancy
Web site. Exactly how much effort do you think this poor
soul is going to put into learning your particular interface?

Think about the user’s experience. The experimental,
cutting-edge Web design you were so proud of can quickly
turn into a barrier for entry—a wall between your audience
and your site.

You’re not alone. Virtually every Web site is experienc-
ing this fundamental issue: Users get confused, and many
are clicking around aimlessly looking for some reason to jus-
tify their Web experience.

Web site developers are finding that if they manage their
users’ expectations through consistency—and not just inter-
nally, but with other similar sites—those users respond. It is
interesting to look at how sites build trust with their users
through consistency and how that is causing homogeneous
interface solutions on the Web. Or, rather, why the entire
Web is starting to look the same.

Building Trust with Consistency
The path from shopping for a computer to your Web site is
a long one for consumers. One of the ways computer ven-
dors and software developers have attempted to make this
experience easier for their users is through consistency. The
premise is simple: If you go through the effort of learning
something once, why not use that new skill over and over

ASWD_001121.qxd 11/27/00 11:17 AM Page 32

The Art & Sc ience of Web Design34

again and build on that foundation, rather than relearning
the same basic techniques.

The Macintosh computer, developed in the early
1980s, used this strategy to introduce computing to an
entirely new audience. Every program on the Mac looked
and worked the same as every other one. The “Copy”
command in a word processor did the same thing as the
“Copy” command in your address book application and
drawing program. Interface widgets like scrollbars, close
boxes, and cursors were shared by every program, both in
appearance and function.

Contrast that to the first attempts at a graphical oper-
ating system by Microsoft. Early Windows programs lacked
the consistent functionality assumed in Macintosh appli-
cations, and were often criticized as far more difficult to
learn and use. On the Mac, every application had a File
menu, and the last item on that menu was Quit, which
could be accessed by simultaneously pressing the “Apple
Key” and “Q.” Every program worked that way; learn it
once, use it over and over. This wasn’t the case in the
Windows OS. Quitting a program may require a “Quit”
command, but might be accomplished by an “Exit” com-
mand, or “Break,” “Stop,” “End,” or whatever the applica-
tion’s developer decided to use. That command could be
on any menu, and could be accessed by any key combina-
tion—or possibly not have a keyboard shortcut at all.
Applied to all possible commands across all possible appli-
cations, it’s easy to see why Windows was considered more
difficult to learn and use than the Macintosh. In fact, the
last few years have seen the Windows operating system
achieve a much more consistent—and therefore easier to
use—approach to application design.

Computer interfaces aren’t the only systems that benefit
from consistency. Learn to drive a car and you’ve acquired
the skills necessary to drive any car. There is a standard of
consistency in automobile interfaces that we take for grant-
ed—the wheel in front of the driver turns counterclockwise
to steer the vehicle left, the pedal on the floor can be

Chapter Two - Inter face Consistency 35

pressed to go faster, and so on. Imagine if the 2001
Volkswagens used joysticks to steer, and a big knob on the
dashboard to control speed. Lexus might counter with a
trackball, followed by the Nissan retina tracking line-of-
sight steering system. You get the idea....

Putting Consistency into Context
Consumers of these products aren’t the only beneficiaries.
The people who produce them rely on consistency, as well.
Computer software developers and automobile designers
know that they can build consistency into their products to
avoid solving the same problems over and over. Rather than
spend time reinventing scrollbars to move through a docu-
ment, software developers can focus on making it easier and
more efficient to write a letter using their word processor.
The scrolling problem was solved long ago; they need not
worry about it. Likewise, instead of literally reinventing the
wheel, auto manufacturers can assume how steering works,
and put more effort into more important areas of innova-
tion—like getting better gas mileage out of their vehicles.

Assumptions like these exist in the world of print design
as well, and again are seldom challenged. Think about the
rules for how a magazine works—a front cover, a table of
contents, page numbers, headlines, photo captions, even
the number of pages and the quality of paper stock. These
are all shortcuts to understanding the focus and function of
a particular publication. Print-based designers can take all
of these rules for granted as they develop a particular proj-
ect, focusing instead on the message to be communicated.

Think of these basic rules of consistency as context that
both consumers and producers of products can use. These
contextual clues are all around us as we live our lives in
our modern world. We see a red octagon while driving, we
know to stop. We see a little box with an X in the corner
of a program’s window, and we know that we can click it
to close that window. We learn the clues once, we use
them over and over.

ASWD_001121.qxd 11/27/00 11:17 AM Page 34

The Art & Sc ience of Web Design36

From Print to the Web
It’s easy for Web designers to envy print designers. Those
working in print know the rules, how to bend them, and
when to break them. Designers have had over 600 years of
history and tradition with powerful context that developed
through centuries of printed material. A magazine designer
doesn’t have to worry about how a magazine works. The
designer can assume that readers will turn pages and, in
Western society at least, read from top to bottom.

Navigation, page layout, and all the other basic pieces of
a product’s usability are taken for granted. Wired magazine,
for example, broke many rules when it hit the newsstands
in 1993, but the experimental design was still printed on
pages that you turned from left to right. It wasn’t printed on
a cone that you spun on your head … it was a magazine,
and despite its rebellious and experimental visual aesthetic,
it still followed the basic context of a magazine.

Early on in the evolution of the Web, when the first
users of the first browsers surfed the first Web sites, there
was little context. The Web itself was such a dramatic step
toward making the confusing Internet easier to use, that
most were glad they could simply point and click. And con-
sidering the incredibly limited state of HTML at the time
and the under-powered browsers that existed back then,
most sites looked pretty similar anyway.

The Web has become mainstream, though, and is devel-
oping its own context. The last five years may be a hyper-
speed blur of a rapidly growing new medium, but the basic
context has been evolving slowly as a constant flood of new
users comes online. Look at one of the most basic units in
the foundation of the Web, the hypertext link, as an exam-
ple of a context on the Web.

Someone once decided that in graphical browsers, links
should be set apart by color and given an underline. In
addition, when a user moves the cursor over the link, that
cursor should indicate “clickability”—usually by changing
from an arrow to a hand with a pointing finger.

Chapter Two - Inter face Consistency

The blue underlined word became one of the Web’s first
contextual clues to functionality. By simply attaching the
appropriate code to a word or phrase, designers would trig-
ger the browser to render a link. This would let the user
know that she could navigate by clicking those words. As
the technology of the Web advanced over time, allowing
greater control of design elements like typography and
color, the context of hypertext links evolved. Now, links
need not be just blue, but can simply be a contrasting color
to the text around them. In certain circumstances, such as
when a large group of links have been give the spatial rela-
tionships common to navigation systems, even the under-
lining can be eliminated.

So context can evolve. The fact remains though that
Web designers aren’t required to teach every user how
hypertext works. They can simply indicate a link through a
well-defined contextual clue, and leave it at that. “It’s a
link,” the color tells us, “Go ahead and click it.”

While a native context like hypertext continues to
evolve on the Web, we can also borrow and adapt new con-
textual clues from the real world. Think of the simplicity of
an arrow pointing to the right. Imagine typing a URL for
the fictional Blexo Corporation into your browser window,
and seeing the following on a Web page:

BLEXO INDUSTRIES

Would you have any question in your mind as to where
to click, and where you would expect to go? At least in the
Western world, an arrow pointing to the right means “more
this way,” “next,” or “continue.” We unconsciously assume
that the arrow is relaying a message ingrained in us from
years of using printed material. “Turn to the next page” it
tells us. We understand without thought that the arrow will
take us to Blexo’s home page.

What if the arrow had been pointing up? A subtle
change, yet a shattering of context, and you’re left wonder-
ing just what exactly would happen if you clicked. If the

37

ASWD_001121.qxd 11/27/00 11:17 AM Page 36

Links may very well have been the first

context for the Web, and it is certainly

true that the basic unit of hypertext is

one of the first things new users grasp.

But how far can we push this funda-

mental understanding? The answers tell

us quite a bit about how design on the

Web is evolving.

It pays to reflect on where HTML

started, and just how limited the presen-

tational functionality of the Web was in

the early 1990s. In the pre-Netscape era,

there was virtually no control over things

like typeface, color, or size. As a result,

those writing early Web documents sim-

ply wrapped an <a> tag around text they

wanted to link to some other Web refer-

ence. The text would render in blue,

with an underline, and that was that.

The dawn of the tag changed

that. Paired with attributes like LINK and

VISITED on the <BODY> element, design-

ers could start to develop an aesthetic

sensibility in their pages using color

schemes. But, with any new freedom

comes new

responsibility.

Now, a basic

usability axiom

could be abused.

You could, for

example, change

the link color to

something other

than blue. Would

users learn that

any color could

be a link? You

could also, if so

inclined, use the

 tag to set

Evolving Links

Designer Drue Miller recommends the

squint test: Squint as you look at the

screen and see if the links are still

distinguishable. If they are, you’re

safe. She also offers this example of

the <U> tag gone horribly wrong in her

presentation “Design Effective

Navigation.” Nothing on this page is a

link. What a mess.

Must hypertext always be expressed with underlined text? Not

necessarily. The links on the front page of the Yodlee.com serv-

ice clearly point to sections such as “company,” “products,” and

“partners” without requiring a redundant underline. Sometimes

careful page layout is enough to communicate a link.

38 Chapter Two - Inter face Consistency

all the type on a page in blue. Add the

<U> tag for an underline, and you could

really start confusing people. And to

obfuscate things even further, the

Cascading Stylesheets specification

brought us the text-decoration proper-

ty, giving us the ability to turn off the

underlining for links. All of these are

powerful tools when placed in the

hands of smart designers. But all can

be used for good as well as evil. So

where does that leave us now?

To this day, it is true that the default

blue, underlined text will communicate

to your users that the words are a link.

These stylistic conventions can be

changed—carefully—to match the aes-

thetics of your pages. Most Web users

have learned that links can be any

color, as long as that color is sufficiently

distinguishable from that which is not

clickable. And underlining can be elimi-

nated, as long as you clearly communi-

cate some other way—either through

layout, or association—that the words

are hyperlinks.

Just don’t do the opposite: Using

hypertext conventions when the text

isn’t a link is always bad. Underlined

text will be perceived as a link, as will

colored words out of context. And that

will confuse your users.

It would be easy to make some sort of rule proclaiming “Link Colors Must Always Be

Consistent On a Page,” but there are exceptions to every rule. Here, the links into the

Hotbot directory use two colors to denote categories and subcategories. Those colors

match the rest of the site’s color scheme and effectively communicate hierarchy.

39

ASWD_001121.qxd 11/27/00 11:17 AM Page 38

The Art & Sc ience of Web Design

arrow had been pointing down, however, you may have
looked for scrollbars or simply assumed that clicking the

arrow would
move you down
to where the con-
tent was. A left
facing arrow, on
the other hand,
would probably
give you the
sense that you
missed some-
thing. “Blexo is

back there” the screen would imply,
“Go back that way to see it.”

This process of learning is often
referred to as building mental models—
a bit of cognitive psychology jargon
used by those in the Computer/Human
Interaction (CHI) community. It’s a
useful concept that we’ll put in prac-

tice to see how our Web audiences learn to use our pages.

Navigating with Models and Maps
It’s no secret that the act of designing is a process of com-
munication between audience and user. The layout of a
page in a magazine tells a reader of that magazine where to
look, what’s important, where to start reading, and more.
The same goes for the designer of, say, the knobs and but-
tons on a car stereo. The designer knows exactly how it
works, since he was involved in the process of designing the
device from the start. Since designers are privy to the inner
workings of a device, or story, or Web page, it’s easy for
them to form a model in their minds to represent those
intricacies. “The stereo can get louder or softer,” thinks its
designer. But without a knob, there is no way its owner
would know this. By placing a knob on the device, the

The elegantly designed Web site for the

Museum of Modern Art provides very

simple contextual clues. Here, a small

arrow next to the logo provides a clear

navigational pointer.

40 Chapter Two - Inter face Consistency

designer has exposed a piece of his mental model to the user
through context.

The CHI community likes to talk about mental models
and mental maps using the analogy of how we navigate
through the streets and avenues of the cities we live in and
with which we are familiar. You know where you’re going,
how things work, what the symbols mean, and even to
avoid 5th Avenue because they’re tearing it up again. You
seldom get lost and rarely need more than an address and
cross street to find a new restaurant or shop.

But think about the last time you visited a completely
new city, especially in a foreign country. As you wandered
around the city as a tourist, you probably felt a sense of dis-
orientation, even though you still knew the basic rules. You
walked on the sidewalk and not in traffic, you stopped at
intersections, you understood that the numbers on the build-
ings represented addresses which go up in one direction and
down if you go the other way. Thankfully, your previous
experience with the design of cities applied to this one too.
By applying your mental model of cities to this one, you
made the differences that much easier to negotiate.

But back to the Web. For your design to be successful,
you must match your mental model with the one the user is
progressively building. Again, this is another way of adding
consistency to your Web pages. Your site may have a com-
pany logo in the corner of the page. A user discovers that
by clicking on it, they return to the site’s home page.
They’ve just been given a glimpse into how the system—in
this case your Web site—works. If, a few pages later, the
same user clicks the logo and it doesn’t take them back to
the home page, you’ve chipped away at the user’s model.
When there is a miscommunication between the designer
and the user, things fall apart quickly.

What you are trying to create are a set of internal con-
ventions across your Web site, based on external conven-
tions from the rest of the Web. In fact, it would be useful to
consider the following axioms for building and managing
your users’ mental models:

41

ASWD_001121.qxd 11/27/00 11:17 AM Page 40

The Art & Sc ience of Web Design42

• External interface conventions come to your site
with your users. Break these, even if you do so with
internal consistency, and you’ll confuse your users.

• You can extend external conventions, but you can
only do this with extreme caution.

• Do something differently from everyone else only
when there is a measurable benefit for doing so.

• Internal interface conventions build trust with the
user. Break one, and you erode that trust.

Mental models are useful when talking about the Web.
Even more useful, however, can be a specific type of model
called a mental map. These mental maps are built by users as
they move through a space. Imagine visiting Disney Land
and wandering through the park without the free map they
give you at the gate. It would take a lot longer to find the
rides you would want to go on, and you’d probably miss quite
a few. Rather, you use the printed guide to show you where
you are, what is near you, and where else you can go. I proba-
bly don’t have to draw too hard of an analogy to the Web at
this point, we’re all wandering around without one word.

Mental maps for a particular Web site can be developed
almost instantly, if done with extreme simplicity and using
existing models and context as a base. These are simple
examples, but they are valuable in helping us understand
how powerful a simple context, used with consistency, can
be. It can be even more powerful to see how they don’t work.

Broken Models and Maps
Some contextual and mental models that we take for
granted on the Web may not be that appropriate after all.
The scrollbar, for example, has long been a staple of win-
dows-based functionality in graphical user interfaces. It
simply denotes that there isn’t enough screen real estate
available to show all the information in the current docu-
ment. Therefore, an interface is presented to allow the user
of the document to move around the page, canvas, or win-
dow. But there is a subtle yet important difference between

Chapter Two - Inter face Consistency 43

applications used to create new stuff—like word processors
and image editors—and the browsers we use to find stuff.
Bruce “Tog” Tognazzini, the respected interface designer
behind the original Macintosh Finder interface, calls this
problem “hidden discoverability.” He’s referring to this
basic difference: When people are using the Web, they are
viewing documents they did not create, but using an inter-
face that assumes they did. That’s why, he argues, so many
people fail to understand that there is more content
extending past the bottom of the screen. They need to
scroll to see the rest, but they often don’t. They don’t see
the scrollbar, because they don’t realize the page is so long,
because they didn’t create it.

While it may be an interesting theory, Web advertisers
know this is true, and they let designers know this with
their checkbooks. Anything that doesn’t show up on the
initial screen—or “above the fold” to borrow an old news-
paper term—isn’t nearly as valuable as the words and pic-
tures users see first. Ad placement, then, becomes critical,
often at the expense of the user.

There are other ways that context develops and then is
broken, often by designers with the best intentions. Think
for a moment about the simple hypertext link I spoke of
earlier. As I said, it’s one of the first contextual clues new
uses discover as they venture out on the Web. To them, it
means “click here to go somewhere else.” But not all links
are the same.

Often, authors of exceptionally long documents will
offer a sort of table of contents at the top of the page—usu-
ally a listing of the subheads that are coming below. By
using a feature of HTML’s link mechanism, authors can put
a “named anchor” around each subhead, effectively linking
to a specific location in a document. But, for new users, there
is no way of telling the difference. To them, they see links,
which take them somewhere else. When they click the link,
odds are they won’t notice that the URL or page title hasn’t
changed? Do they see that the scrollbar has moved halfway
down the page? If they’ve been building a mental map of

ASWD_001121.qxd 11/27/00 11:17 AM Page 42

44

It’s interesting to see how the subtlest

of factors affect a product’s design strat-

egy. Newspapers, for example, are fold-

ed in half to fit in the vending boxes on

the street. In order to sell more papers,

editors would put what they felt to be

the most compelling stories “above the

fold” such that potential readers would

be attracted while walking by. Thus, get-

ting a story above the fold was a goal

of intrepid journalists.

The same is true, in a sense, on Web

pages. Editors, advertisers, product

managers, and interface developers all

compete to get their particular feature,

banner, story, or link on the default

viewing area of the browser—the Web

version of the fold. The more visible a

site’s feature, the thinking goes, the

more attention it will get from users.

But where is the elusive browser “fold?”

Unfortunately, there’s no definitive

answer to where the browser will cut off

your page. Computers can be set at

many different resolutions, and users

often size their browser windows differ-

ently. There are some standards you

should be aware of, however. The vast

majority of users have their screens set

at one of the following resolutions:

640x480, 800x600, or 1024x768. By

changing your monitor preferences while

developing your designs, you can test

your interface at those three specific

resolutions and see just what your users

see.

Recent studies have shown that, as

of this writing, 800x600 seems to have

the highest percentage. Ideally, we

should all create interfaces that scale

according to a particular resolution (as

discussed in Chapter Four, “Behavior”).

But at the very least, check out what’s

actually making it above the fold.

Where is the “fold?”

Who is seeing what? At 640x480 (top),

Yahoo doesn’t even appear to have cat-

egories. Higher resolutions like 800x600

(middle), or 1024x768 (bottom) bring

progressively more to the page.

Chapter Two - Inter face Consistency 45

the site as a hierarchy, what happens now? A link hasn’t
take them deeper in the site, it just has moved them around
the document. Confusion sets in.

Or consider the basic tension between site navigation
and browser navigation. You land on a home page, then
click on a link to enter the site. You are now one page deep
into the site, based on the map you’re building in your
head. The page you are on has a link back to the home
page—good user
interface design,
right? “Never
leave a dead end”
the old rule
states. So you
click the link and
you’re back on
the home page.
Your experience:
You arrived at a
site, you went
down into it, you
came back up.

Now look up
in your browser’s
toolbar and you’ll see two buttons labeled “Back” and
“Forward.” Clicking the back button takes you… gasp…
forward to the page you dug deep into. And the forward
button isn’t even active. As far as the browser is concerned,
you’ve not been back from anywhere yet. All it remembers
is a long list of pages you’ve been to, in the order you visit-
ed them—even if you went up and down a few times. Those
just count as entries in that list. So the site has a hierarchi-
cal navigation model and it’s bumping up against the brows-
er’s linear model.

Could it be possible that users, flighty and impatient as
they tend to be, don’t bother with mental models, maps, or
a singular context as they land on your site? Maybe, in the
few seconds you manage to keep them on your home page,

Which links on this page point to other documents and which

just navigate to other parts of the page? The links here are a

confusing mix of both.

ASWD_001121.qxd 11/27/00 11:17 AM Page 44

The Art & Sc ience of Web Design46

the only tools they bother to use are the ones they learned
on the outside of the Web. Does that mean your Web site
needs to be more like all the other ones out there? There’s a
chance that may just be the case.

Using Page Layout to Create Context
I loved seating charts. As a student throughout my elemen-
tary school years, I felt the system was continuously in my
favor. At least with my less creative teachers, the seating
chart was alphabetical—Dana Abby always sat in the front,
Harold Zinser scored a back corner. I, of course, with the
last name Veen, was assured a spot somewhere in the back
of the class. As my early-alphabet classmates answered ques-
tions and suffered discipline, I slouched in the back of the
room, passing notes and generally learning little.

My teachers did this, of course, as a way to place 30 new
faces with 30 new names each year. By Halloween, names
were associated with parts of the classroom, and, unfortu-
nately, with the general behavior of those areas. My teach-
ers would unthinkingly focus particular messages to particu-
lar parts of the room when an important point needed to be
made. By Thanksgiving, my teacher would know us so well
we’d be rearranged into a new chart, and for some reason I
was always up front.

The arrangement of students allowed the teacher to easi-
ly make assumptions about the class, and thereby tailor the
day’s lessons to fit. We’re seeing the same sort of “layout-
based” assumptions being applied to Web pages. As a page
loads, the way in which the elements of that page are
arranged on the screen immediately means something to a
user. Big words at the top, a vertical list of colored words
down the righthand side, a text-box interface with a submit
button, a cluster of paragraphs in the middle of the page—
all of these things, by the very nature of their position, have
immediate meaning to today’s Web users. This is a critical
point, because the meaning a user places on a page element
may be quite different from what you, the author, designer
or developer of the page, thought they meant.

Chapter Two - Inter face Consistency 47

And, there is a notable difference between my seating
chart example and Web page layout: As users of our pages
learn them and become comfortable with them, they
demand they stay unchanged. Forever.

Page layout is unquestionably one of the strongest con-
texts used by designers. These layout-based contexts didn’t
happen by accident, either, but have grown and evolved
along with the technology and trends of the Web itself.
Understanding where they came from, how they’re continu-
ing to evolve, and why so many have adopted them can
give us both a foundation for good Web design, as well as a
view of a brighter future.

The 3-Panel Page
There has been a lot of buzz around the terms “usability,”
“user experience,” and “user friendly” in Web design circles.
In a quantitative sense, increasing the usability of a Web
site can be a difficult series of iterations, testing a design
over and over again until every possible conflict and all
embedded confusion have been eliminated. With a few sim-
ple tools, however, qualitative usability can be a lot easier.
When we evaluate a page by asking a few simple questions,
we can define a small set of heuristics that can guide us to
effective interfaces. Of course, heuristic evaluation can be a
complicated, time-consuming affair. But at its essence, the
process can be very simple.

But what does this have to do with context? The answer
is all around us on the Web today. Designers across the Web
have been taking the most obvious and basic heuristics and
applying them to Web pages. Many of them have found
remarkably similar solutions. The result: The Web as a whole
grows in consistency based on context, but innovation lags.
The Web, as many complain, looks the same everywhere.

Let’s look at how this happened.
As I said, the complexity of evaluating a Web site or

page can fall anywhere on a continuum from very simple to
quite involved. For this example, we’ll take the lead from
Keith Instone, Usability Engineer at Argus and Associates

ASWD_001121.qxd 11/27/00 11:17 AM Page 46

The Art & Sc ience of Web Design48

and the maintainer of Usable Web (www.usableweb.com).
Instone offers a bare bones solution to heuristic evaluation.
Choose a random page on your site, ask three questions
about that page, and evaluate the answers you get. If you
are unsatisfied with any of your answers, something is wrong
with the page. It sounds simple, and it is. But it’s remark-
able how many obvious errors are introduced to a Web page
during the rounds of compromise in the development
process. The questions are:

• Where am I?
• What’s here?
• Where can I go?

Try it. Surf to any page on the Web and ask these three
questions. Can you tell where you are? Can you instantly
determine what the page is about? Do you get a sense of the
overall site architecture, and where you go next if you con-
tinued surfing?

Again, we’re not interested in defining a model for
usability on the Web right now. The important point here
is how these questions represent the most basic needs and
expectations of a Web audience traveling through cyber-
space. Do they know where they are, what they’ve found,
and where they can go? On most large, commercial Web
sites, the answer is undoubtedly yes. But at what cost?

If you take our three criteria and
see how they’ve been applied to the
majority of Web pages, you’ll see an
obvious pattern emerge.

The diagram to the left shows a
simple Web page deconstructed to
show three general regions of the page.
The strip across the top (#1) answers
our first question, “Where am I?” Let’s
call this the brand bar. A strip down
the left side of the page (#2) gives tells
our users “Where can I go?”—we’ll

1

2 3

Chapter Two - Inter face Consistency 49

generalize this as navigation. Finally the bulk of the page
(#3) is devoted to content, or “What’s here?”—we’ll refer to
this as the canvas.

Where am I?
Users seldom follow the traffic patterns that designers
intended. They often don’t come through the front door of
a Web site, but rather come tumbling in from all directions.
Search engines, bookmarks, URLs passed from friends, links
from other sites—these are just a few ways users find their
way to a particular page on a given site. Localizing them—
immediately telling users exactly where they are—is critical.
If you’ve ever come up from a subway station in an unfamil-
iar city, you know the sensation. You immediately scan the
street for everything from street signs to the direction of
shadows cast by the sun in an attempt to re-orient yourself
to your new surroundings. Same goes for the all-too-com-
mon effect of popping into the center of a Web site.

Localization happens in two ways—one free, one you
have to build yourself. Free localization is given by the
browser interface. The simple fact that the browser displays
the URL and Title of every page it renders gives users at
least some indication that they ended up at their expected
destination. The browser might also indicate whether the
current Web site is sending encrypted pages over a secure
connection, how much of the page has loaded, whether the
current network connection is still active or not, and a vari-
ety of other subtle clues.

But title bars, overly complex address displays, and built-
in interfaces only go so far. Overt localization comes from
careful page design, and almost always take the form of
branding. No matter how simple or complex, small or big,
information-based or experiential your site, the fact that it’s
a self-contained entity means that at some level, it has a
brand—even if it’s nothing more than a restating of the
domain name.

Take this example: Reading a Web page, you come
across a link on the phrase “Edward Tufte’s Envisioning

ASWD_001121.qxd 11/27/00 11:17 AM Page 48

The Art & Sc ience of Web Design50

Information.” You click the link; the destination’s branding
bar immediately takes over. Did you land at a site named
“Amazon - The earth’s largest bookstore?” Does the site sug-
gest it contains book reviews? Or were you directed to
Tufte’s own site? Regardless of where you ended up, the
point is that if the site follows our heuristics, the area at the

top of the page—the brand bar—told
you immediately.

What’s here?
Users need to be immediately assured
they’ve found what they were looking
for. The Three-Panel Layout leaves
the rest of the page dedicated to that
task. While this may seem obvious,
I’m constantly amazed at how often
this simple fact gets forgotten.
Designers look at their pages all day,
every day, and fail to see them the way
their users invariably do. That, cou-
pled with the fact that users seldom
navigate sites the way designers antici-
pate, leads to pages lacking a clear
sense of purpose. Remember: People
use bookmarks, get links via e-mail,
find pages directly through search
engines, and happen across a particular
page in scores of other unforeseen

ways.
I’m not going to spend a lot of time talking about the

best way to communicate what content lives on a given
page. Using clear visual hierarchy and appropriate page
labels will accomplish much of that task. Simple, humanly
readable URLs help too. And don’t discount the power of a
well-written <TITLE>.

By following an existing context, you can effectively
communicate to any user coming from any direction to a
given page the most basic information they need to success-

Edward Tufte’s home page and a page

selling his books on Amazon.com. How

quickly can users tell the difference

between these two pages? Established

contexts inform them immediately.

Chapter Two - Inter face Consistency 51

fully evaluate an interface. This maps the functions of local-
ization, site structure, and content offerings to the regions
of the page that users expect.

Where can I go?
I’ve already discussed mental models and mental maps, and
how users begin to develop a representation of a particular
site the instant they land on it. Our second heuristic for
page layout feeds directly into this user behavior. Once your
users have established their current location, they’ll try to
determine what else is available to them on this particular
site. They do this typically by scanning the navigation that
has been represented on the page.

In the Three-Panel Layout, I’ve drawn the navigation as
a vertical stripe down the lefthand side of the page. Again,
if you compare this basic context with others, like our link
example before, we can draw some interesting conclusions.

For as long as there have been Web sites, there have
been strategies for navigation. Even today, the Web is rid-

How important is something as minor as

URL structure? You’d be surprised. With

the advent of commercial dynamic pub-

lishing systems, the addresses that con-

front most users as they click through a

Web site can be appalling. Despite the

fact that URLs were never intended to

even be seen, most users depend on

them for critical information: where a

link is about to take them, or where

they are in the overall site structure.

Compare something as simple as...

http://www.site.com/computers/note-

books/lightweight/compare.html

to this typical example from a dynamic
site:

http://www.site.com/computers.dll?134

5,1,,22,567,009a.html

In the first example, a quick glance

to the browser’s address bar tells users

where they’ve landed, no matter what

may be on the screen (especially when

network anomalies delay page loading).

With the second, there’s little to help

the hapless surfer.

URLs as Navigation Context

ASWD_001121.qxd 11/27/00 11:17 AM Page 50

The Art & Sc ience of Web Design52

dled with different schemes for moving users through a set
of pages. From tab-based systems, to horizontal labels to
pull-down menu effects, there is a slew of choices for any
given situation. But what we are interested in at the
moment is not the best possible choice, but how to effec-
tively communicate what on the page is navigation. This
process of heuristic evaluation happens in an instant and
occurs at a nearly subconscious level. So how can you tell a
user something about the structure of your site in virtually
no time and with almost no thought? Again, we fall back

on context.
Years ago, a few Web sites—notably

the commercial computing resource
CNet.com—began to experiment with
rigid consistency in navigation across
their sites. CNet, in particular, focused
on a navigation strategy that closely
aligned with its brand. Since color can
be so intimately associated with corpo-
rate identity (think Coca-Cola red or
National Car Rental green), CNet
chose a particular shade of yellow, and
never wavered in its use. This color,
paired with a very literal representa-
tion of the structure of its site, turned
into a navigation system that stuck in
users’ minds. The strategy was a simple
one: List the site map on every page of
the site, and separate it from content
with a strictly enforced band of color.

Why a vertical stripe of color on
the left of the page? The decision was most likely based on
the constraint of past versions of HTML and browser tech-
nology. There are very few constants in a user’s environ-
ment: We have no idea how big the screen is or how wide
the browser window is on that screen. But we do know that
the upper lefthand corner is where we start rendering.
Include a background image that colors the first, say, 150

The classic Three-Panel Layout as

embodied (and some say invented) at

CNet.com. The yellow strip down the

lefthand side of the page not only

defines the region as navigation, but

communicates the CNet brand. This

example represents navigation and

localization working hand in hand.

Chapter Two - Inter face Consistency 53

pixels differently from the rest, and you’ll have a guaranteed
definition of the region of the screen, no matter how wide
or tall it may be.

Thus, a context was born. Users of CNet began to
understand subconsciously that “yellow bar means naviga-
tion” just as quickly as new users understood “blue under-
lined word means hypertext link.” And, of course, they
brought that new knowledge with them to other Web sites.

CNet and most of its competitors have redesigned its
navigation system since those days. The rigorous consisten-
cy has remained.

Remember that navigation does more than just tell your
users where they can go. Effective navigation also acts as free
advertising for the rest of your site. Or, to state the effect in
our new jargon, a clear communication of a site’s structure
will help develop a user’s mental model. Be careful not to
judge the effectiveness of such navigation strategies based on
click through and traffic patterns alone. Many parts of the
page are never touched by users, but aid tremendously in
helping them to understand what your site does and how
that functionality is represented through its architecture.

The Sincerest Form of Flattery
Imagine the pain of having to teach users how a link works
every single time you added one to your page. Your designs
would be riddled with explanations of how moving one’s
mouse to a particular point on the page and clicking the
appropriate mouse button will make this page disappear and
a new page from a new location begin to draw. Thankfully,
we can rely on context to simplify our interfaces.

That reliance, though, can appear to be theft when
applied to something like basic page layout. The screen-
shot below makes use of the Three-Panel Layout heuris-
tics we’ve been discussing, and does so in a very effective
way. Notice that the interface is labeled in Spanish.
Even if you’re not familiar with the language, you can
discern what the regions of the page are doing: the top
brands and localizes, the left column is for navigation,

ASWD_001121.qxd 11/27/00 11:17 AM Page 52

The Art & Sc ience of Web Design54

and content fills the rest. But this interface is virtually
indistinguishable from the CNet example we’ve just
examined earlier. When does exploiting context cross
the line to simple copying?

The answer is that we need to
find a balance, of course. Just as the
contextual clues for hypertext have
changed and evolved over the few
years of its popularization, so too
have those of the Three-Panel
Layout. Strategies from other naviga-
tion systems have been co-opted and
synthesized to unique effect. In this
screenshot from an older interface
from the Industry Standard’s Web
presence

(http://www.thestandard.com/), a tab-based metaphor is
applied successfully to a Three-Panel Layout. The tabs
allow for a sort of modal-switch in how the navigation
works. This strategy slowly pushes the evolution of the
existing context. Users know how tabs work. Users know
how the navigation in this layout works. Add the two

existing bits of knowledge for seam-
less learning.

Even sites with a more avant-garde
aesthetic can use the most basic con-
text as a foundation. On the
Northlight site, the Three-Panel
Layout has evolved almost beyond
recognition. Yet the basic assump-
tions—a rigid grid, a known point of
origin, standard content area—again
play to users’ basic assumptions.

It’s tempting to reject such basic
conventions as an over-simplified
approach to interface design. It is,

after all, an exciting new medium. To think we’ve even
scratched the surface on what is and will be possible on the

Chapter Two - Inter face Consistency 55

Web is naive. Yet for all the exploration and experimenta-
tion we’ve done to date, there have been a few strategies
and design implementations that have proven successful. To
dismiss basic contexts such as link colors, page layouts, nav-
igation systems, and visual hierarchy as “boring” or “pedes-
trian” is akin to laughing at a car’s steering wheel as
unimaginative.

And we haven’t even started talking about portals yet…

The LSD Design
A few years back a couple of grad students at Stanford
University started a side project. It was simple enough:
They began a collection of their favorite sites, and organ-
ized them in a hierarchy sorted by subject. The project
grew, and the Web site they created started attracting some
attention. As with most things on the Web at that time, its
reputation started to spread and soon their project, now
dubbed “Yet Another Hierarchically Officious Oracle”—or
YAHOO—outgrew its little server on Stanford’s network.

The rest of the story is, of course, the stuff of Net legend.
But it’s interesting to see how something as innocuous as a
hierarchy has grown into one of the most used interface
solutions on today’s Web.

The Yahoo interface developed simply as a way to organ-
ize what was essentially a map of the entire Web. In order to
provide a manageable list of subjects, a certain amount of

ASWD_001121.qxd 11/27/00 11:18 AM Page 54

5756

If today’s interfaces are any indication,

the Web has become the world’s largest

filing cabinet with its various subjects

displayed on millions of tiny folder tabs.

Click from site to site and you’ll see

them. Tabs, it seems, are all the rage.

In the Macintosh Human Interface

Guidelines, the tab-based interface

widget is defined as, “… a convenient

way to present information in a multi-

page format. This control is distin-

guished by the visual appearance of

folder tabs. The user selects the desired

page by clicking the appropriate tab,

which highlights and displays its page.”

You may be familiar with this rendering

from preference screens or control pan-

els. Microsoft even took the step in

some of their Office applications of

evolving tabs into two rows that toggle

in an almost random like fashion as you

click back and forth.

But why the popularity on the Web?

Whereas tabs are an effective strategy

for the confined space of a dialog box,

does their meaning effectively translate

to large e-commerce sites? Yes and no.

If tab-based interfaces can be

thought of as different views of the

same information, then it should be

possible to extend that meaning on the

Web to different views of the same

task. On Amazon.com, for example, the

users’ goal is in fairly sharp focus:

They are there to buy. Tabs, then, were

used early on in the Amazon interface

to define what users could buy—an

effective use of “view switching” as it

were. The tabs were small, but so

where the concepts: books, music,

videos. As Amazon grew, so did their

use of tabs. Quickly, the tab strategy

scaled beyond its initial effectiveness.

Whereas before, the meaning of each

tab was clear, additions of things like

“Auctions” started to erode that mean-

ing. Are you to assume that clicking

“Auctions” allows you to buy an auc-

tion? Of course not, but you can see

how the metaphor begins to fall apart.

Later, an obscure “zShops” was added,

and soon after a tab labeled

“Welcome,” effectively muddling the

interface beyond recognition.

Even worse, though, is the poor use

of tabs when users’ goals are less well

defined. When Amazon and a handful of

other e-commerce sites proved success-

ful with their interfaces, the strategy

spread across the Web in an instant.

Suddenly everyone had tabs, regardless

of their meaning of mapping. The defini-

tion of the tab widget began to slip into

obscurity, much like overused jargon.

Eventually, tabs began to mean nothing

more than a random structure of a site,

or worse: they simply exposed features.

Now, it’s not uncommon to see a site

with a tab system labeled “Home,”

“Free e-mail,” “Search,” and “Site map.”

How are users supposed to understand

the particular meaning of an interface

like this? Tabs have become nothing

more than well-promoted links. Use

them correctly or don’t use them at all.

Using Tabs

Microsoft uses a tab-based interface in Word to select modes in many dialog

boxes. Unfortunately, they get carried away in some cases with tabs in multiple

rows. Clicking an upper tab on the right dialog box causes the two rows to switch

positions. Very confusing.

Amazon.com’s tabs, while once an effective map of user goals, are now extended

beyond effectiveness.

The online grocery delivery service Peapod misses the mark with tabs that have no

conceptual relevance to one another.

ASWD_001121.qxd 11/27/00 11:18 AM Page 56

Chapter Two - Inter face Consistency 59The Art & Sc ience of Web Design58

Designing with Patterns
As you read this, look around. Is there a door near where
you are? How does the doorknob work? Go take a look at it.
Is there a lock? What is the mechanism for locking and
unlocking it? How does the knob turn? Is it round, or more
of a handle? Do you need to twist it, slide it, or push it in
order to open the door?

Lots of questions. You could probably think of even
more if you stared at the doorknob long enough. In fact, if
you spent enough time studying the process of opening and
closing, locking and unlocking doors, you could become
quite an expert on doorknobs.

I’m describing a particular design process in the para-
graphs above. It’s known as a Pattern Language and is a fas-
cinating approach to determining the ultimate “goodness”
of a design solution. Pattern Language design has been
around for some time, but the concept is generally attrib-
uted to architect Christopher Alexander, who developed
the notion and applied it to not only the study of door-
knobs, but doors, rooms, houses, neighborhoods and cities.

ambiguity was inevitable. Thus, the 16 categories attempted
to explain the full breadth of Yahoo. Soon after, subcate-

gories were added to ease the selection
process. Would you find “Recycling”
under “Science” or “Society &
Culture?” Tough call, until you notice
the “Environment” subcategory associ-
ated with the later. The rest of the
interface was an academic exercise in
typography and layout. Subcategories
should be smaller than their parent
categories, and an ellipse shows that
there are more than just the three
being shown. Two columns get more
above the fold. Add the requisite
branding and search engine and a new
context is born: Logo, Search box, and
Directory—or the LSD design.

Thus, as with the Three-Panel Layout, user expectations
became ingrained. The LSD design spread to sites eager to
leverage the simplicity of Yahoo, and the prior knowledge
users had gained there. Through 1997 and into 1999, nearly
every site that attempted to compete with Yahoo (and quite
a few that didn’t) conjured up a version of the LSD inter-
face.

As we saw with the Three-Panel Layout, designers can
leverage users’ previous experience with interfaces like this
to make the mental map-building process seem nearly trans-
parent. Looking at the screenshot below, how much of the
interface can you identify just by its implementation of
existing context? (Assuming, of course, that you don’t speak
the Danish language.)

Of course, merely understanding contexts from other sites
is only the first step in applying consistency to your site. You
need to find solutions for your contexts as well. Solving
design problems is, after all, a blending of external conven-
tions and specific situations. Thankfully, there is a process
for developing the best answers that goes back decades.

Categories + Subcategories = the Yahoo

Directory. This particular architecture

has been copied and refined more than

just about any other.

Users bring previous experiences with them to your site.

Consider how many interface elements you can identify in this

screenshot of Denmark’s Jubii.com.

ASWD_001121.qxd 11/27/00 11:18 AM Page 58

Chapter Two - Inter face Consistency 61The Art & Sc ience of Web Design60

window latches or light switches or sidewalks or park
benches. The same holds true when looking for patterns in
our Web sites. You may have many different types of infor-
mation, or a dozen distinct tasks that your audience is try-
ing to accomplish. But start small. Chances are that if you
have a site for some time, it grew very rapidly and very
organically. It may feel like the site is completely out of
control. Don’t get overwhelmed with the seeming complex-
ity of your existing site. Just pick something and start there.

Let’s look at searching as an example. If your Web site
has a search engine, how does it work? Be very specific. I
chose one from a Web site I worked on and pictured it
above. It has a text input box, a couple of options that
modify the search, and a submit button. Now here’s where
we start making decisions. Once I understood the technolo-
gy behind the search, as well as the way my audience would
be using it, I could generate the following questions:

• What is the optimal size of the text input box?
• Should the options be before the box or after?
• What sort of interface elements should the

options use?
• What is the best text for the submit button?
• Should the submit button be rendered as default

HTML, or should it be an image?
• Should there be line breaks between elements, or

should they all be on one line?
• Should this whole interface be labeled? If so,

with what?

His basic premise was that we should start from the bottom
and work our way up—that is, by asking questions about
very simple things, we can find the best answers and com-
bine them into complex things.

Take the doorknob example again. Once you’ve become
a doorknob expert, you should be able to accurately
describe how that device should work. Then, you should
start studying doors. Where should the knob go? What’s the
best way to hinge the door to a frame? What’s the best size
for a door? Where should it go in a room? How many doors
should a room have? Now you’re starting to become a room
expert. You’ll also become a window expert, and a floor and
ceiling and wall expert. How should rooms be arranged in a
house? What heuristics make for a space that feels good to
be in? How do you connect those spaces? As you work from
the bottom up, you’ll find yourself looking at bigger and big-
ger issues—like how public spaces can foster community
interaction, or how city design can alleviate congestion.

The process of developing pattern languages isn’t con-
fined to the world of architecture. Patterns have been
developed for such far reaching disciplines as computer
science and corporate organization. And, as you may have
guessed by now, a Pattern Language design process also
works very well when applied to Web design; even though
we don’t have doorknobs on the Web, their equivalents
are pervasive.

So where do we start? We’ll need a clear idea of just
what a pattern is. In his book, A Pattern Language: Towns,
Buildings, Construction, Alexander describes patterns as “a
three-part rule, which expresses a relation between a certain
context, a problem, and a solution.” The problems
Alexander was referring to were ones that would happen
repeatedly. The solutions he proposed were abstract enough
that they could be used over and over again. Let’s try it
with a Web design dilemma.

Starting to develop patterns is as easy as simply looking
at an existing Web site and just picking something. In my
real-world doorknob example, I could have started with

A simple search interface for a music portal site. This particular solution was the

result of a number of design patterns derived from many contexts.

ASWD_001121.qxd 11/27/00 11:18 AM Page 60

Chapter Two - Inter face Consistency 63The Art & Sc ience of Web Design62

I tried to answer these questions based on the research
I’ve done both on my audience, and the conventional wis-
dom for the Web in general. For example, my content will
elicit a pretty specific set of queries when my audience does
searches. I can look at those queries and evaluate them,
which can inform the answer to my first question. For this
site, most queries had multiple words in them. If, however, I
had been building a stock quote server that took companies’
three- or four-letter ticker symbols as input, then my box
could have been significantly smaller.

I’ve now developed the first pattern for my language. I
could state it like this:

• Context: Users are searching for known items by
typing text into an input box.

• Problem: If the input box is too small, it’s difficult
for users to see errors they’ve made or edit their
query. However, there are interface constraints on
how big the box can be.

• Solution: When building a search interface, base the
size of the text input box for queries on the length of
your users’ typical queries.

Let’s continue with the questions above and see a few
more examples. I’ve got two options for my search. The
search interface is designed for a music site, so I’ve given
my users the ability to target their query to either Artists or
Albums. That way, some one searching for Rolling Stones
will find the band, and can exclude references to the Bob
Dylan song, “Like a Rolling Stone.” So where should those
options go?

I start by looking at all the possible options available to
me. In this case, I’ll have multiple items from which my users
will choose. Looking through the form elements in HTML, I
see that there are four possible interface widgets that will
allow users to select from multiple items: checkboxes, radio
buttons, pulldown menus and option boxes. With this knowl-
edge, I quickly prototyped all four possible solutions:

Now, I’ll evaluate each solution. The first won’t work,
since checkboxes allow users to select both artists and song.
My database doesn’t work that way, so I can’t offer my users
that functionality. Radio buttons, however, can only be
used for choosing one selection from many choices. So this
works better for this particular search application. The pull-
down menu has the same effect. Users can click the menu
and see the list of all choices, then select the one they
want. This would be compatible with my search features,
but I’m not as happy with this solution. In the tests done on
user interfaces on the Web, I’ve seen a lot of users ignore
pulldown menus. Since the options in a pulldown are not
immediately visible and require the user to click and
explore the options, they often go unnoticed. Of course,
this doesn’t mean these widgets should never be used—in
fact, they’re quite an effective use of space when a user
needs to choose between many items in a known set. (For
example, pulldowns work great when a user needs to select
the state they live in. They know that the pulldown menu
will have a list of 50 states.) Since I’m motivated to com-
municate the options available, I’ll choose not to hide them
in a pulldown. Finally, the option list in the last example
offers users the ability to see all the available search param-

Prototyping all the possible solutions to the search interface

problem.

ASWD_001121.qxd 11/27/00 11:18 AM Page 62

Chapter Two - Inter face Consistency 65The Art & Sc ience of Web Design64

eters, but again allows users to select multiple items. It also
takes up more vertical space that I care for in this case. So
option lists are rejected. The winner, then, is the radio but-
ton prototype. Another pattern added to my language:

• Context: A form-based interface for a search engine
with multiple sources that can be queried.

• Problem: HTML forms offer many ways to select
between different options. Which is the best?

• Solution: When offering a small number of distinct
search options, radio buttons are the clearest and
most effective solution.

That leaves us with the submit button. HTML forms
give us two ways of submitting forms. The first allows me to
create a simple button to be rendered by the operating sys-
tem. The second allows me to create my own button as an
image. Both work the same way—a user clicks the button
and submits the form. Which should I use?

Again, it depends on the situation. In this case, I’ve fac-
tored in some of the constraints on this page. Performance is
important, as is feedback for users who may not be as famil-
iar with the Web as I’d like. For these reasons, I’ll choose
the HTML submit button. It has a series of benefits that
make me more comfortable than simply using an image but-
ton. For example, the button will be rendered using a stan-
dard element from my user’s operating system—Macintosh
users will see a Macintosh button and Windows users will
see the appropriate translation into their OS. This allows me
to rely on an existing external context that is, users will
inherently understand how the button works because they’ve
used it before in other applications on their computers. I
won’t have to go through all the work of developing a “but-
ton-like” image that mimics the buttons they’re used to see-
ing. It is also faster. The image button requires yet another
connection between the Web server and my user’s browser.
And I also appreciate the feedback of an HTML button; it
appears to push down when a user clicks it, signifying that

they’ve successfully submitted the form. I won’t, however, be
able to tailor the button to match my look and feel.
Especially considering that most form widgets can be clunky
in the context of a well-designed identity. So another pat-
tern emerges for my interface:

• Context: Submitting an HTML form.
• Problem: There are two ways of displaying a button

on a Web page: as an HTML element, or as an
image.

• Solution: The usability benefits of an HTML form
submit button outweigh the visual flexibility of an
image button.

I would continue through every question I was able to
generate from my simple search interface. In fact, the
process of developing patterns often leads to more problems
in need of solutions. As you can see from the examples
above, the particular context of my users and my content
make a big difference when developing design solutions.
But I also should be looking externally, as well. One effec-
tive method is the competitive analysis. With this process,
we can choose one interface element, and compare all the
possible solutions, find the similarities and differences, and
apply them to our contexts.

Let’s look at another interface convention popular in
contemporary Web design: the topic path.

Finding Your Way Back Home
“Topic paths” are a navigational tool designed to help users
understand where they are in a Web site, and how they can
get around. This interface element provides navigation by
listing sections of a Web site in a parent-child relationship,
with the top-most resource at the left, and links to the right
that become progressively more detailed. All portals use
them, as do many content and e-commerce sites. Topic
paths are a well-known convention across even the newest
Web users, due largely to the fact that both the Windows

ASWD_001121.qxd 11/27/00 11:18 AM Page 64

Chapter Two - Inter face Consistency 67The Art & Sc ience of Web Design66

operating system and the Web’s URLs both force this navi-
gation scheme on everyone.

The image above is a typical example of a topic paths
navigation scheme from the Open Directory Project. Note
how categories get more specific. The last category, or
“node,” is not linked in this case and serves as the headline
for this particular page.

Stylistically, topic path strategies differ in only a few
ways across the many portals and sites that implement
them. Most notable are the separators used between parents
and children, the location on the page, and the type of
description used for the last node.

The individual children of a topic path trail need to be
separated from one another with some sort of punctuation.
That mark should have some semantic value; it needs to
describe the relationship between the parents and children,
or “this is in this.” The majority of sites use either a colon
(:), or a greater than sign (>). On some occasions, especial-
ly with sites catering to a more technologically sophisticat-
ed audience, a backslash (/) is used (mimicking the conven-
tion used in URLs). Which is best? For my audience, a
backslash makes the navigation too technical. And at the
font size I want to use, colons look to much like the vertical
bar character (|). So a greater-than sign it is.

• Context: Topic path navigation of a hierarchically
organized Web site.

• Problem: Users need to distinguish between links in
the navigation system in a way that communicates
the relationship between the items.

• Solution: Using a greater-than sign is a clear and con-
cise way to signify a parent-child relationship for an
audience that may not be technically sophisticated.

How preeminent should the topic path be? Should it be
separated from the page title? Should it be separated from
the page’s branding? All of these questions are addressed
when deciding where the navigation should fit into the
page layout. Clearly, the topic paths should be near the top
of the page. When a user lands on a particular spot in a
large site, that user instantly tries to determine where the
page fits into the bigger architecture. Branding and naviga-
tion do that work, and topic paths in particular can quickly
and accurately shape a user’s mental model of the site.

There seem to be as many strategies as there are sites
that implement topic paths when it comes to page loca-
tions. Sometimes they appear immediately below the site’s
branding and logo; sometimes they take a position below
the ad banner, at the “beginning of the content.”

Yahoo, for example, separates the last item in the topic
path and breaks the line. They increase the weight and size
of the typeface as well, and change the background color to
appear as a header. All of this happens above the ad banner,
separating it from the rest of the content of the page. This
feels artificial.

The Go portal integrates topic paths even tighter into
its directory. Here, the navigation is more a feature of the

A Topic Path showing a user’s location in a hierarchically-structured Web site.

ASWD_001121.qxd 11/27/00 11:18 AM Page 66

Chapter Two - Inter face Consistency 69The Art & Sc ience of Web Design68

page than a method for localization. The links are set under
the main category into which the user has navigated. This
header unit is below both the branding and the advertising.

Snap, on the other hand, uses topic paths as a clear
starting point for the page. They begin below a well-defined
advertising area (set off with a browser-chrome gray back-
ground). Once again, the topic path is being used as the
definitive headline for the page. One’s location is often con-
noted by the words that are contained in the drilldown
links. Moreover, when you click on a drilldown link the
topic path changes. There is a cause-and-effect that must be
visible. Thus, other things equal, it is important that the
topic path and the drilldown links share the same locality
on the page. The Yahoo directory does it incorrectly. Snap
does it better. Why put the heading at the end of the topic
path? To make cause-and-effect visible. I like this solution,
and test it with my users. The results are promising: during
testing, all the subjects noticed the topic path in the overall
page layout and could identify its use.

• Context: Topic path navigation of a hierarchically
organized Web site.

• Problem: Where on the page should this type of navi-
gation go so it has a clear relationship with the con-
tent, but also is noticeable among other page elements.

• Solution: If a site has a strong sense of hierarchy,
design the topic path as if it were the page’s headline.

Evolving Context
But where does all this leave us? We have problems to solve on
our Web sites; are we to assume that existing interfaces have
happened upon all the solutions? Is our job merely to copy?

Of course not. There are as many exceptions to the
existing contexts I’ve outlined in this chapter as there are
examples. Still, there are three very important lessons to
take away from our discussion of interface consistency.

• Users bring external contexts to your site. You will
confuse users if you break them.

• These contexts are evolving, but the evolution
is slow.

• Innovation can be found by developing patterns.
Seek them out.

First, merely copying interface strategies will get you into
trouble. An interface solution popularized on a successful
site may work well on your site as well. It may also fail mis-
erably. The Three-Panel Layout has its place, as does the
LSD design, and a tab-based structure. There are hundreds
of other approaches as well. The best way to know what
people are using and, more importantly, what is working
and why is to be keenly aware of the evolution of today’s
Web sites. Do you know who your competition is? Evaluate
the dozen sites that do something similar to what you’re try-
ing to accomplish. Look at the sameness and where they
diverge. Try to uncover the strengths and weaknesses of
them. List as many conventions as you can, from color
choice and typography to layout, architecture, and editorial
tone. Only then can you start to leverage the contextual
knowledge your users are bringing with them to your site.
Think back to our real-world examples: You wouldn’t design
a bicycle with a steering wheel unless you applied only the
most superficial of research into piloting vehicles.

Second, you need to understand the rules before you can
break them. It’s a truism that applies to everything from
writing prose to riding motorcycles, and it sticks to the Web

ASWD_001121.qxd 11/27/00 11:18 AM Page 68

Chapter Two - Inter face Consistency 71The Art & Sc ience of Web Design70

as well. I am baffled by competent
designers eschewing “traditional infor-
mation architectures” or “tired old
navigation schemes” when we barely
even understand how people are using
our sites. We’re only now seeing suc-
cessful strategies for rendering large
information spaces. Those strategies
need to evolve, but that evolution may
not be happening as quickly as we like.

Finally, don’t fear innovation, espe-
cially if you have a clear understanding
of your audience. By using a process of
uncovering design patterns (or whatev-
er other method you are comfortable
with), you can focus in on what con-
texts and conventions exist with your
users and the other sites they visit.
Solutions will fall out of a careful study
of your site from the bottom up, and by
thinking like your audience, you can
find the best answers to these prob-
lems. It’s absurd to think of a main-
stream portal implementing a
Shockwave-based multimedia interface
to its product. It’s equally absurd to
picture a artist’s portfolio in the LSD
design. The choices you make should
transcend the conventional wisdom,
but only if you understand intimately
what that wisdom currently is.

I hold out optimism for innovation
in Web site design. I do not believe
we’ll be living indefinitely with a Web
that mimics Yahoo and Amazon. Nor
do I think a colored strip down the
lefthand side of the page is necessarily
the best we can do to communicate a

site’s structure and navigational potential. But how will it
change? Where can we see clues for this evolution?

I find inspiration in noncommercial Web creations.
These labor-of-love sites—outside the
mainstream of viable e-commerce and
content—are experimenting and
expanding our interface vocabulary
every day. Take, for example, the navi-
gational mechanism used by designer
Lance Arthur on his site at
Glassdog.com. While taking its basic
form from the Three-Panel Layout, he
innovates by using advanced scripting
techniques to create a unique effect.
When scrolling the page, the block of
links pointing to the rest of his site
scrolls with you. Is it usable? Is it con-
sistent with users’ external contexts for
site-wide navigation? Who cares. It’s
an inspiring look at how navigation
could work, and a target for future evo-
lution on any site.

Beyond simple evolution, Glassdog.com

shows interface innovation with auto-

scrolling navigation.

As Yahoo gained market dominance, its

competitors did whatever they could to

keep up. These screenshots from 1998

show various portals’ attempts to mimic

Yahoo’s success—exploiting the LSD

interface and even using the same

shade of blue.

ASWD_001121.qxd 11/27/00 11:18 AM Page 70

Judging a book by its cover may result in a proverbial misunderstanding, but you

certainly can learn a lot by simply looking at a printed work. Books have size

and shape and page counts and paper quality. You can tell the difference

between a telephone directory, a corporate annual report, and a photocopied

zine just by holding them in your hands. What does a Web site have that com-

municates its contents and functionality? How can you tell the scope and mean-

ing of a Web site from its interface? The process of identifying and exposing

these basic qualities of a Web site is encapsulated in the discipline of

Information Architecture. This chapter will give you an overview of that pure

blend of art and science and deconstruct a number of very large-scale architec-

tures—the world of Web portals.

Chapter Three

Structure

Most Web sites are ever-growing, evolving
collections of information and services. With so
much content, so many services, and untold
user tasks, who makes sense of it all?

[3]

ASWD_001121.qxd 11/27/00 11:18 AM Page 72

Chapter Three - Structure 75The Art & Sc ience of Web Design74

There are cows in Los Angeles. Lots of them. In the subur-
ban town of Chino, some 40 miles due east of downtown LA,
there exists large dairy farms that butt up against the tract
homes and strip malls. These days, the farms are being rapidly
chipped away by development, but in the mid 1980s, when I
was in high school, there were acres and acres of them.

The cows don’t all live in Southern California. Many of
them live farther north, in the state’s large Central Valley.
Big semi trucks ship these animals back and forth every day
in long metal trailers. The ride from north to south places
the cows in a certain amount of intestinal stress, and after
the six-hour trip the trailers are more than a little messy. I,
as a 16-year-old high school student desperate for cash, had
the unique job of climbing into the back of these trucks
wearing rubber boots and wielding a large pressure hose. For
long summer days I would do my best to remove the rem-
nants of the preceding journey, and wonder just what my
future life had in store.

Well, as it turns out, dealing with the mess of ill-con-
ceived Web sites isn’t all that much different from my earli-
er vocation. So many sites are thrown together so quickly
and without thought of users or their goals that I’ve begun
to see dramatic similarities between them and the trailers I
slogged through years ago. With a mess this bad, the task of
bringing order out of the chaos can seem daunting.

Seriously though, there are a lot of folks facing similar
problems with the Web sites they maintain and develop.
Part of the problem with today’s Web is simply finding what
you’re looking for. This problem grows out of an interesting
force: it’s a little too easy to build Web sites. Since pretty
much anyone can pick up the basics of HTML, and every-
one thinks they’ve got something to tell the world, we’re
left with an ocean of content to traverse and not so much
as a dime store compass with which to navigate.

Fixing the Web may be well beyond our abilities, but we
can certainly affect the experiences of users visiting our
sites. Thinking back to the conceptual model from earlier
in the book, we find ourselves on the structural corner of

the words-pictures-code triangle. In the last chapter, I dis-
cussed the appropriateness of Pattern Languages in Web
design, and how technologies like Cascading Stylesheets
can be used to parallel that strategy.

In this chapter, I’ll demonstrate how the structure of a
Web site affects your users’ experience. I’ll start by examin-
ing a typical user experience—in this case, using a series of
search engines and content sites to research a specific topic.
Then we’ll look at how some of the largest sites on the Web
have attempted to make this kind of experience easier
through the practice of integration
through solid Information
Architecture. Finally, we’ll look at
how the technological promise of
XML is foretelling a future of integra-
tion across the Web.

Search and Research
How many times have you stumbled
across a subject you’d like to know
more about, and turned to the Web for
the solution? It happens to me all the
time with musicians. I’ll hear some-
thing new, catch the name of the
artist, then tear into the Web to find
all I can about them: bio, history,
influences, discography, tour dates,
music samples. The Web, when used
well, is a wonderful place.

Let’s take the popular artist Beck as
an example. What would you expect
from a search engine if you simply
typed his name as a query string? If
you said, “Depends on the search
engine,” you would be exactly right.
So let’s start with the Open Directory at
http://www.dmoz.org. Since this is a human-edited catalog of
Web site reviews (as opposed to a raw index of sites like

A page of site reviews at the Open

Directory on the artist Beck.

ASWD_001121.qxd 11/27/00 11:18 AM Page 74

Chapter Three - Structure 77The Art & Sc ience of Web Design76

Alta Vista), our search for Beck turns up a fairly focused set
of results within the directory itself. The most useful
appears to be here:
http://www.dmoz.org/Arts/Music/Bands_and_Artists/B/Beck/

Here, we find a fairly comprehensive collection of sites
that deal entirely with Beck, including his own official site.
Not a bad start, but certainly not the encyclopedic resource
I was after. I want a complete understanding of who this guy
is, after all.

So off to one of my favorite music sites, the All Music
Guide at http://www.allmusic.com/. I can spend hours here,
digging through the thousands of artists all cross-referenced
to each other. What this site lacks is any sort of structure—
in fact, if it wasn’t for the cross-referencing hyperlinks and a
substantial search engine, this site may be entirely unusable.
However, typing “Beck” into the search box gives me what
I’m after—a pointer to a remarkable page of information on
the artist. Here, I find a detailed biography, along with
pointers to other artists like Beck, as well as his influences
and collaborators. A discography even rates his best albums
and gives track descriptions. Yet, despite the amazing
amount of information here, I’m skeptical. What do the
kids on the street really think of Beck? For all of the All
Music Guide’s depth, it lacks one key element: a connec-
tion to other Beck fans.

Off I go to Talkcity.com, a collection of community-
building applications, like chat and message boards, based
on a subject arrangement. Sure enough, there is a whole
collection of Beck conversations happening right now. As I
start to dig in, I find that Odelay may have been a popular
album for Beck, but his true fans think One Foot in the
Grave is his best work to date. So I head over to
AudioFind.com to download MP3s from that album, and
after a listen decide that I want to buy it. Now to
MySimon.com to compare prices and availability across all
the online music vendors, and finally to Half.com where I
pick up a used copy of the album for five bucks.

This is not an uncommon user experience on the Web. I
did a significant amount of research, then acted on the
results and participated in a transaction. I could have had a
similar experience buying a new scanner for my computer, or
a new set of wheels for my mountain bike. The key to these
experiences, though, is that I already knew what sites to visit
to build my research to a point where I’m comfortable acting
on it. What if I had been looking for the best place to go fly
fishing? I don’t know the first thing about fly fishing, or
where to even look on the Web for information.

And that, in a nutshell, is the goal of some of the largest
sites on the Web—the portals—to always be the first place
someone goes to learn about something online. And those
sites have largely succeeded. User tests have shown that
most Web users will have a primary source of information
for subjects they care about, and a secondary source for
things with which they aren’t as familiar. Ask a basketball
fan the score to the last New York Knicks game was, and
he’ll go to ESPN.com. Ask him the country code for dialing
Estonia, and he’ll likely start at Yahoo.

While most of the portals started life as simple search
engines, all have evolved into more ambitious destinations.
The best possible user experience, it turns out, is the worst
possible business case. Think about what you want out of a
search engine: ask a question, find the Web site with an
answer. Two page views is ideal. This “single dip” experi-
ence, though, isn’t optimized at all for companies providing
Web services that generate revenue from ad banners. And
the more pages viewed per user, the more ad banners they
can charge for. Thus, the search engines morphed into por-
tals. Sites like Yahoo, Lycos, Excite, and Snap began to offer
services—any services—that would keep users on their sites
longer. Why send users out to the external Web when we
can satisfy their needs here, goes the logic.

As you can imagine, building interfaces for sites like
these can be challenging at best. Not only must the designs
eliminate nearly all cognitive stress from the user experi-
ence, but they must provide this experience for all possible

ASWD_001121.qxd 11/27/00 11:18 AM Page 76

Chapter Three - Structure 79The Art & Sc ience of Web Design78

users across all possible user goals. Traditional research
methods such as task analysis and usability testing can apply
in a very localized sense (“Can you find out the weather in
Boston?”), but fail across the overall product.

One way to examine how these sites, and eventually
how your site, cope with growth is to look at their architec-
ture. For a few years now, the term Information
Architecture has been growing in popularity as a way of
describing how the structure of content is presented.

Information Architecture
Most, if not all, Web sites are ever-growing, evolving collec-
tions of information and services. With so much content, so
many services, and untold user tasks, who keeps track of it
all? In Chapter One, “Foundations,” we set up a triangle of
disciplines made up of Presentation, Behavior, and
Structure. Presentation fell in the domain of designers,
those who specialize in the aesthetic choices that enable
communication and identity. Behavior, conversely, falls on
engineers, programmers, and script authors. Here, we have
the fundamental front-end and back-end code that facili-
tates interactivity. That leaves us with Structure, the
domain of Information Architects.

Information Architecture is at its core a metaphor.
Architects in the real world design buildings, architects on
the Web design sites. How do they compare?

Information Architecture is a newly popular discipline,
but its roots go back decades. Author and designer Richard
Saul Wurman popularized the profession years ago in his
book, Information Architects. This, from the introduction,
does a good job of laying the groundwork for what we’re
talking about:

Information Architect 1) the individual who organizes
the patterns inherent in data, making the complex
clear; 2) a person who creates the structure or map of
information, which allows others to find their per-
sonal paths to knowledge.

I like this definition because it captures not only the
tasks assigned to such a person, but the process and
methodology wrapped up in doing them. It also sets
Information Architects apart from their real-world counter-
parts. We’re talking about data, not buildings. While the
metaphor may be accurate, it’s just that: a metaphor.
Building architects develop blueprints for structures based
on any number of constraints: the intended use, the avail-
able materials, budget and schedule limitations. All of these
issues affect the work done by Information Architects as
well, but with a difference. Information Architects deal
with structuring content. For example, on an e-commerce
Web site, should the “Registration” process be associated
with “Preferences?” Are there relevant connections
between different products that can be uncovered? The
Architect should know enough about how people register at
e-commerce sites and what their shopping patterns are to
inform these decisions.

But Information Architecture goes beyond simply struc-
turing of data and uncovering the patterns and relation-
ships in content. Architects also need to present these
structures, patterns, and relationships. Bear in mind that by
“presentation” I’m not just talking about the realm of style,
but about how items are emphasized, hierarchical associa-
tions, and how the eye draws across the page, etc. These
are all basic graphic art and design principles, but with the
distinction of being specifically applied to the purpose of
presenting information.

I prefer to add the metaphor of cartography to the mix
in this definition. I think of surveyors with their spotting
scopes charting new territory and carefully recording what
they see. They are, in essence, evaluating a specific set of
data (in this case a landscape), and applying an appropriate
method of organization. They may choose a political view
of the region, showing boundaries and borders that may not
physically exist. They may opt for a topographic representa-
tion, detailing the rises and drops in elevation. Or, they
might show the area based on landmarks, as a tourist map of

ASWD_001121.qxd 11/27/00 11:18 AM Page 78

Chapter Three - Structure 81The Art & Sc ience of Web Design80

a new city realistically depicts cathedrals and museums with
detailed drawing set on a simplified grid of streets.

By looking at the art of cartography, you can see the
importance of creating different representations of data
based on user needs. But there is another way of interpret-
ing this metaphor: Cartography also demonstrates the need
of withholding, de-emphasizing, or obscuring information in
order to, as Wurman suggests, “make the pattern clear.
Architecture, especially on Web sites, is not always about
shuffling ten things around. Sometimes it’s about emphasiz-
ing three, dropping two, and making the other five less dis-
tinct. And sometimes leading folks to “their personal paths
to knowledge” takes a back seat to drawing attention to
overstocked merchandise or high-priced advertisements.

Regardless of their intent, Information Architects look
for patterns, then create maps or blueprints to help people
reach their goals through Web interfaces.

Matchmakers
How do Web sites accomplish this? Information Architects
are essentially matchmakers. Their job is to intimately
understand both a site’s content and an audience’s goals,
and then find the connections between the two.

There are a variety of ways to understand and explain a
site’s content, as well as the intended use by an audience.
Think again about the map example above. A cartographer
designs a map based on the information available, blended
with how the map’s owner will need to use it. A chart of
the San Francisco Bay Area should be designed very differ-
ently for a airplane pilot, the captain of a commercial ocean
liner, and a windsurfer. All three maps would have essen-
tially the same information, but with radically different
views. Take the same geographic region, but add different
data—for example, commuting patterns based on annual
income—and you’d have a dramatically different results.

The same process applies to data and users on the Web.
Some of the most obvious methods that can be used for organiz-
ing data include chronologically, alphabetically, geographically,

or audience-specific. But this simply hints at the architectural
solutions in use on the Web today. Let’s look at some examples.

On his personal Web site,
www.camworld.com, Cameron Barrett
keeps an updated list of pointers and
commentary on what is happening in
the Web design and development
industry. Since he posts these com-
ments every day, his site is organized
chronologically. Headings running
down the page organize each collection
of links by the date in which they were
added. A calendar metaphor allows
navigation through the archives of his
posts, using a familiar mechanism for
moving through periods of time.

Cameron also includes an extensive
list of sites he routinely visits, a sort of
bibliography that gives context to his
perspective. While this list could be
ranked by his preferences (best to
worst), Cameron wisely chooses to list
them alphabetically. In this case, since
the user is being asked to make a choice
from some 99 items, listing them in
alphabetical order is easily the most effi-
cient way to find a desired name.

Compare Cameron’s list to the one
on the EditThisPage.com site. Again,
we’re looking at a list of Web sites, but
in this case they’ve been organized
based on popularity as measured by
traffic to the individual site. The possi-
bilities for presentation and organiza-
tion are endless; there are as many dif-
ferent methods of organizing a
particular set of data as there are users
of that data. However, the point

A daily journal of Web design and

development links on camworld.com

uses a chronological architecture.

Same data, different view. The

EditThisPage.com ranking of top hosted

sites is similar to the list of links on

CamWorld.com, yet organized based on

a different user need.

ASWD_001121.qxd 11/27/00 11:18 AM Page 80

Chapter Three - Structure 83The Art & Sc ience of Web Design82

remains: The best solution is the one that serves the users’
needs the most effectively.

Sometimes, there may be more than one appropriate
architecture for a specific audience or collection of con-
tent. Web sites have many different segments to their

audience, with
many possible
goals. One solu-
tion to this
diversity is to
provide multiple
views at once.
Take this exam-
ple from
NetFlix.com, a
popular online
DVD rental site.
The architects at
NetFlix realize
that there are
many different

ways to find a movie to rent, and they built an interface
that attempts to satisfy those needs. In the left column of
navigation, in addition to a direct access search engine,
there are popup menus with a variety of organizational
schemes: by genre, by awards won, by release date, and
even by features of the disc itself.

These examples are easy. All of these sites have simple
architectures based on well-defined user tasks. The
CamWorld Web site provides a snapshot of the happenings
in the Web design industry, while EditThisPage.com offers a
way to find the most popular of its hosted sites. NetFlix
allows users to find a movie by genre, actor, or even mood—
a good example of offering alternative organizational sys-
tems to a single set of information.

Some sites, however, don’t have the luxury of well-
defined methods of organization. Software publisher Adobe
Inc. is a good example. While they certainly have a strong

grasp on the goal of their site—to provide inspiration and
support for the users of their digital publishing tools—the
method they use in organizing their content is an excellent
case study in developing user-centered architecture.

The creators of the Adobe Web site realized that the
various members of its audience would have a variety of
tasks to accomplish. Some may be interested in purchasing
software. Others may need technical help with one of their
tools. Still others may simply be looking for ideas to incor-
porate into their work. To satisfy these goals, Adobe offers a
few different entry points to the library of information on
their site. The home page, for example, offers flashy teasers
into high-profile content, ostensibly with the dual goals of
selling software and inspiring existing owners. The site real-
ly shines, however, when a user needs a specific bit of infor-
mation. Using classic techniques from the information sci-
ences, Adobe offers three different methods for digging into
their content repository: search, site map, and index.

The search engine works as you would expect. Type a
query, get a list of possible matches from a full text index of
the site. The site index works much like an index in a book
would. Individual topics are carefully selected from the
pages of the site, then given descriptive titles and organized
in an alphabetical list. Compare the index page with the
site map, which takes broad topic areas—in this case
Adobe’s products—and presents a conceptual overview of
the entire site.

Finding stuff on Adobe’s site becomes a matter of decid-
ing just what method of organization you find the most
appropriate to the task at hand. Think of the different tasks
associated with, say, getting information on Photoshop’s
Gaussian Blur filter. “Simple,” I might think. “I’ll just create
a page on that filter in the site’s Photoshop area. But
remember, Information Architecture is not only the disci-
pline of organizing information, but getting people to that
information. And I’d need to be keenly aware of why people
would want information on that particular filter. A site
index may lead my users directly from the ‘G’ section to the

NetFlix.com offers multiple organization schemes for their library

of movies. Each one is appropriate for a different user task.

ASWD_001121.qxd 11/27/00 11:18 AM Page 82

The Art & Sc ience of Web Design84 Chapter Three - Structure 85

page on that filter, but won’t allow
them to find other filters that do simi-
lar blurring effects. Nor will that archi-
tecture show which other Adobe prod-
ucts use the same Gaussian blur filter.
(In fact, almost all of them do.) And
none of these systems point to last
week’s press release on the third-party
company partnering with Adobe to do
a suite of new filters.

Each view has a significantly differ-
ent perspective on both the available
content and the reason that content
would be valuable to a specific group
of users. In fact, audience-specific
architectures can be the simplest form
of organizing content or features of a
Web site. Look, for example, at the
interface on Guru.com. This site has
content that serves two very specific
groups of people—independent profes-
sionals, and the people looking to hire
them. The site has been organized
cleanly down these lines and even
bases its identity on the division. The
front page is divided into two distinct-
ly colored areas—one for each audi-
ence group. After following a link on
one side or the other, the resulting
interface design maintains your “color
choice,” essentially reaffirming the
architecture through presentation.

But as sites grow larger and more
complex, how can they accommodate
the infinite user tasks and still provide
a consistent mental model? Many sites
typically rely on taxonomy and hierar-
chy to communicate the overall struc-

ture of their offerings to users, helping
them feel as comfortable as possible
with their virtual surroundings.
Taxonomy is a bit of librarian jargon
for how things are classified. Think of
the Dewey Decimal System or the
subject categories in the Library of
Congress. Both are vast naming
schemes for information spaces.
Taxonomies help us understand the
world around us by labeling the things
with which we need to interact. A
Web site is no exception. The basic
architecture of a site starts with a tax-
onomical foundation.

There are many ways in which they
accomplish this. Let’s look at three
from some of the largest and most complex sites on the Web.

Adobe uses different methods for

organizing the content across their Web

site. All three interfaces provide access

to the same pages on the site, but with

different user goals in mind. Shown are

Adobe’s search engine (top), product-

based site map (middle), and alphabeti-

cal resource index (bottom).

Discussions and debates of Information

Architecture will undoubtedly lead to the

use of the terms “taxonomy” and “hierar-

chy.” Both of these words hold an unde-

niable place in the cannon of the disci-

pline, but all too often they are used

interchangeably, and therefore incorrectly.

To be clear, taxonomy refers to clas-

sification systems—typically scientific

naming schemes for things like plants,

animals, chemicals, elements, etc.

Information Architects use this term to

refer to the labeling systems and

nomenclature of things like the sections

of a Web site, or the various product

groups in an e-commerce system.

Hierarchy, on the other hand, refer-

ences a top down organizational struc-

ture—imagine your family tree or a corpo-

rate org chart. Hierarchical relationships

are typical fairly rigid parent/child systems,

and are often valuable for browsing large

amounts of subject-based information.

Not all taxonomies, therefore, are

hierarchical. The names of weekdays, for

example, are a taxonomy of sorts—

Monday, Tuesday, Wednesday, etc.—but

they aren’t organized in a top-down

structure; they are sequential. Likewise

a train schedule may have a taxonomy

of route names, but is organized

chronologically.

Taxonomy vs. Hierarchy

Guru.com offers a clean distinction

between the two audience group their

research identified: independent profes-

sionals and those who hire them.

ASWD_001121.qxd 11/27/00 11:18 AM Page 84

Chapter Three - Structure 87The Art & Sc ience of Web Design86

The Matrix
Yahoo’s original interface had one goal: help users find Web
sites. Thus, it helped defined the look and feel of search
engines by providing two key elements, a search interface for
direct input of queries, and a browse interface for disambigua-
tion and category hunting. While this certainly satisfied
many users’ goals on some level, it failed to provide Yahoo
with a substantial business model. Thus the interface evolved
into what it is today: the same basic user goals surrounded by
and peppered with snares designed to keep the audience
within the confines of the portal. Stock quotes, free e-mail,
sports scores, etc., all combined to entice folks to come to the
site, stay as long as possible, and come back often.

To execute quickly, most portals—Yahoo included—
began to license content rather than create it themselves.
Rather than spend time and money becoming experts at,
say, financial news, why not just sign a deal with CBS
Marketwatch and add the services as quickly as possible?
Portals were quickly able to spread their reach across
numerous vertical content areas.

Services, however, were another story. Free e-mail, or
calendaring, or online address books were guaranteed
“sticky” services that resulted in repeat visits and numerous
page views—perfect for getting more page views of the audi-
ence they were reaching with the newly licensed content.
However, these services, once built, only required a mini-
mum level of maintenance. This marked a dramatic cost
difference from content services, which required large, tal-
ented, and expensive staffing. The portals responded by
buying the services, or even developing them in-house. The
suite of content and services began to feel complete.

But there was a problem. The last thing the portals
wanted was a “single dip” user experience in which users
come for one reason, fulfill a goal, and leave. Rather, a well-
designed site would integrate as much content and as many
services as possible, providing as many opportunities to
cross-sell their offerings as possible.

So let’s map out this structure, which I’ll call The Matrix
(because I absolutely loved the movie, but in a bigger sense
because it is an accurate description of what’s going on
here...) The Matrix is made up of the vertical content areas
bisected by horizontal services. Each intersection is a point
of possible integration. The more points that a portal can
execute, the more complete their service will be perceived
by users. It’s a network effect—the more destinations you
have on your site, the more opportunities you have to make
connections between those destinations. And more connec-
tions means a more complete user experience, and therefore
more value for any particular user. And, of course, the more
value you give to the user, the stronger the relationship you
can build with them. More relationships, more traffic, more
revenue—everybody is happy!

The chart above illustrates the overall Matrix architec-
ture. Looking down the left column, we find services that
touch all of the content areas. Each portal, for example, has
a subject-based directory of Web site reviews. You can usu-
ally find these on the site’s home page rendered as a alpha-
betical list of categories, typically underscored with subcate-
gories. (And, they’re almost all the same—“Arts &

Horizontal services intersect vertical content areas to create the “Matrix” architec-

ture used by major portal sites like Yahoo, Go, and Snap.

Autos

Directory

Community

Commerce

News

Multimedia

Business Careers Computers Games Health

ASWD_001121.qxd 11/27/00 11:18 AM Page 86

Chapter Three - Structure 89The Art & Sc ience of Web Design88

Entertainment,” “Business & Economy,” “Computers &
Internet,” etc.) These directories are almost always organ-
ized hierarchically; as a user clicks from page to page, they
move deeper into more specific subjects. Thus, the front
doors are simply showing the top level of a categorical tree
of subjects. You can see these categories on the chart in the
first row across the top.

Under Directory in the Matrix is Community. I’m using
this term to refer to Web applications that allow users to
participate either by using chat rooms, message boards, or
other interactive features. These areas are popular with
portals because of the “stickiness” they create—an awful
industry jargon for features which attract users to a site and
keep them there—conjuring images of a Roach Motel or
flypaper. Regardless, these features can also be categorized
hierarchically. People chat or post messages about subjects,
and these subjects can be matched to the ones we just
looked at in the Directory. Those same subjects can be
cross-referenced to appropriate news headlines aggregated
from a variety of sources. And there always seems to be
room for e-commerce in sites like this; a catalog of poten-
tial products can map to those same subject areas. We can
start to see a model for integration.

In aggregate, these services could ostensibly create a sim-
ple yet robust architecture. But that assumes a lot. Will an
architecture like this scale with a growing site? Will users
understand it? Is hierarchy even the appropriate foundation?

Hierarchies seem to come naturally to portals. While
debate continues as to the ultimate effectiveness of a top-
down Information Architecture, this strategy has proven
best of the worst, as it were. As we look at the horizontal
services, or methods for organizing information and explain-
ing that to users, we can see multiple hierarchies at work.
Each portal has a directory of Web site reviews. Each portal
has community space for users to interact with one anoth-
er—also sorted by category. Each portal has had to respond
to the pressures of generating revenue by adding e-com-
merce functionality to their sites, and the products available

for sale also form a hierarchy. With so many hierarchies,
how can these sites explain the sheer quantity of stuff avail-
able, let alone add a layer of understanding to it all?

Yahoo’s Impulse Buying
Each portal that we’ll look at has its own method of expos-
ing The Matrix. Yahoo, for example, uses what I’ll call the
“Impulse Buy” method. Yahoo.com is massive in both its
breadth and depth. They’ve been successful at responding
to nearly every trend that has blown through the Web, be it

virtual greeting cards, fantasy sports leagues, or content for
kids. What Yahoo has also excelled at has been its ability to
integrate disparate content and services. As we’ve seen in
our Matrix, each intersection of horizontal services with
vertical content is an opportunity, and by examining
Yahoo’s integration strategy, we can see them taking full
advantage of this.

In this screenshot from Yahoo’s sports vertical, we can
see a number of successful integration points. Each one,
you’ll notice, is targeted specifically at an assumed user task

The “Impulse Buy” architecture takes multiple hierarchies and integrates them case

by case, one opportunity at a time.

Directory

Commerce

Community

News

ASWD_001121.qxd 11/27/00 11:18 AM Page 88

Chapter Three - Structure 91The Art & Sc ience of Web Design90

at a specific moment in the user expe-
rience. Just as you’ll see bottles of
Caesar Dressing by the Romaine let-
tuce in the supermarket, links to “San
Francisco Giants Message Boards” are
linked prominently. This connection is
obvious. But think of the scale here.
Yahoo has countless pages across thou-
sands of subjects. The size of its Matrix
is phenomenal. Plus, we’re not just
talking about one to one links. This
Sports page, for example, also links to
its online calendar application by giv-
ing readers the ability to add the
Giants’ games to their daily schedule.
There are links into the appropriate
places in Yahoo’s directory. And yet
they are able to manage the integra-
tion in every place that makes sense
across its gigantic site.

What Yahoo sacrifices, though, is
an overall structure. Look at its home
page. Sure, the directory of mini-
reviews appears well structured. It’s a
cohesive grouping of categorical links,
all arranged alphabetically. But this is
a subject-based taxonomy, not a task-
based integration. The tasks, along
with content features, and other serv-
ices are merely listed across the top,
and are ordered, I’m guessing, by
either user popularity or by revenue-
generating capacity. Regardless, it’s not
a system that quickly communicates
what the heck this Yahoo thing is. It’s
not surprising that new users, when

asked to describe the service, call it, “A search engine
with… uh… other stuff too.”

Would it be possible to offer this level of task and sub-
ject integration and still give users a sense of how it all fits
together? It’s a daunting task, but some have tried.

Snap’s “Uber-Tree”
Snap.com takes a different approach. Snap is one thing and
one thing alone: a hierarchy. Everything on the site fits in
to this Uber-Tree in some way, no matter what. The portal
is aggressive and rigorous in its organization. Whereas
Yahoo had offered links between relevant chunks of the
site, Snap mushes them all together. Clicking through into
the “Health” branch of the hierarchy, we’re presented with
a list of subcategories to further disambiguate what we’re

after. So far, the experience is identical to every other direc-
tory on the Web. We have the topic path navigation, the
columns of links … but then things start to look a little less
familiar. Rather than the obligatory collection of Web site
reviews, we’re instead offered links into targeted Lifestyle
content. Feature stories are followed by news headlines and
e-commerce opportunities, as well as peeks into the offer-
ings of “premier partners.” Only then do we see pointers to

Yahoo offers a suite of integrated serv-

ices from nearly every page. Here, a

report on a baseball team also points

to an online calendar, community servic-

es, a directory of Web sites, and

more—all contextually.

Snap merges everything—absolutely everything—into one grand hierarchical struc-

ture… whether it fits or not

ASWD_001121.qxd 11/27/00 11:18 AM Page 90

Chapter Three - Structure 93The Art & Sc ience of Web Design92

the external Web. Snap has effectively integrated a slew of
content and services together into a seamless whole.

So why is Snap successful at bringing this integration
together while Yahoo isn’t? Part of the reason probably
stems from Snap’s original strategy, which was to bluntly
copy Yahoo a number of years ago. Since Snap could start
from scratch, they were able to apply a much more promi-
nent structure to their growth than Yahoo was ever able to.

Yet, despite all the benefits of consistency and struc-
ture, Snap often suffers under its own rigor. Navigating
through the site, you’ll find loops and weird “diagonal”
navigation shifts as the taxonomists at Snap attempt to
shoehorn another feature or service into their pre-
imposed tree. One of the most important axioms in the
discipline of Information Architecture states that design-
ers are the ones who uncover patterns inherent in data,
and expose them in an interface. Snap, on the other
hand, does exactly the opposite: applying data to pre-
existing and artificial patterns.

Go’s Stackonomy
Finally, Go.com attempts to blend both of these strategies.
Their interface incorporates countless Impulse Buys with an
rigorous structure. They even go a step further, attempting

to create an interface to explain it all to its audience.
Unlike Snap, which relies on the conventions of a directory
to expose structure, or Yahoo which doesn’t bother, Go uses

a tab-based interface metaphor to expose an interesting
“Stack of Taxonomies”—or Stackonomy—structure. Here,
multiple hierarchies are laid on top of one another, with
connections attempted where they match.

At the top level, we’re given a fairly standard portal
interface: a search box perched above a directory. But
between the two, tabs denote a sense of the scope of
Go.com’s site. We’ve entered the portal through the
“Home” tab, but we can also access the “Community” area,
as well as the obligatory “Shopping” link and a “Search”
tab. Go.com is attempting to tell us just how much stuff
they’ve got, and exactly how it’s organized. Think of the
portal as a cube, with different views of its content on each
face—clicking a tab is like spinning the cube around. But
enough with the mixed metaphors.

Drill down into Sports, and we see Sports content; click
on Baseball and the content gets more specific. Here’s the
really interesting part: now that we’ve drilled down into
Baseball, the tabs across the top of the page now take us to
contextually relevant parts of the site. Thus, the Community
tab now points to chat rooms and message boards pertaining
to—that’s right—Baseball. The Commerce tab offers memo-
rabilia and souvenirs for your favorite team, Search offers a
Web site directory. Could this be the ultimate in integration
we’ve been searching for? Might we be looking at a true rep-
resentation of The Matrix?

Unfortunately, no. While Go.com is certainly on the
right theoretical track, they fail to really pull it off. Our
baseball example is a good one; but it is, I’m afraid, a rare
example where Go actually has relevant content in all the
horizontal services. In most cases, users are unceremonious-
ly dumped “up” a few levels in the hierarchy when the
appropriate content for that subcategory isn’t available.
Click down on the Computers link, and follow it down
into Software, then Utilities, then Fonts. You should
assume that all the tabs on this page are somehow related
to Typography in some way. You should, but you’d be disap-
pointed. There are no message boards on Fonts or

Go attempts to line up their multiple taxonomies, but finds too many holes.

ASWD_001121.qxd 11/27/00 11:18 AM Page 92

Chapter Three - Structure 95The Art & Sc ience of Web Design94

Typography, so clicking the Communities tab sends you
diagonally to boards discussing Computers. The Commerce
tab merely links you to Software in general. And on and
on through out Go.com—the intent is there, but the exe-
cution is lacking.

And the winner is…
Has anybody done it right? Not yet. While Go makes the
most ambitious attempt at explaining the level of integra-
tion, they also have failed at executing. Conversely, Yahoo
has done an excellent job of integrating its various services,
but never actually communicates the over all integration
structure to their audience.

Just as a good classification system will spawn prediction
in information retrieval, a good integration structure will do
the same with services. If a user can imagine how pieces of
the puzzle will fit together, they will seek out integration
that they assume exists. This is an excellent way of building
a strong relationship between a user’s goals and a site’s offer-
ings, and therefore increasing the level of trust your users
commit to you. And that’s good.

Taking the best practices from all three strategies will
ultimately be the answer: Smart integration at a user’s deci-
sion-making point, coupled with a strong sense of hierarchy,
communicated by exposing a simple, overall structure.

These sites are trying—with various levels of success—to
shape and order the chaotic world of the Net. But they can
ultimately never hold back the avalanche of information con-
stantly tumbling down the slopes of the Web. Why? Look for
the answer where it always seems to be: Follow the money.

Yahoo, Lycos, Go, and all the others share a common
trait—they are all trying to provide a proprietary experience on
top of a free resource. It’s an admirable goal, but one destined
to come up short as soon as money starts to change hands.
See, in order for a deep structure to be exposed in a consis-
tent interface, there needs to be content available. This is
architecture, after all. We need raw materials to create our
building once the blueprints have been drawn. So to get con-

tent, these Web portals do deals with folks who actually have
stuff: Yahoo republishes Reuters news feeds; Go points to
ESPN for sports scores and statistics. And as we’ve seen, they
try to stitch it all together with different structural strategies.

But even if you could fill the entire portal structure with
content you still wouldn’t create a product that satisfied the
goal. You would simply have one partner for each content
area, and you’d have effectively and seamlessly integrated
them all together. But what about the rest of the Web?
What about the hundreds of millions of other content
sources mingling out in the real world?

But, as we’ve seen when deconstructing the architecture
of the leading portals, there’s no way for them to keep up.
No one site can give me as deep an experience of research-
ing Beck that I described above. Nor can one site ever hope
to offer the breadth of subjects and services that would
allow me to find any information on any subject and let me
act on it with as many possible choices.

A global repository of human knowledge may be a
admirable goal and the large commercial portal sites may
valiantly struggle to achieve this, but few of us are working on
such a scale. For most Web sites, simple integration can play a
role in providing a complete and compelling user experience.

For example, my marathon-obsessed wife recently point-
ed out a frustration with an e-commerce site offering run-
ning shoes for sale. The site had an extensive selection of
shoes and good prices, but more importantly, had a well
maintained and vibrant message board system used by fel-
low runners. The site was rich in first-hand reports from dif-
ferent levels of runners on what shoes worked for what
types of feet, running styles, and terrain. Yet, surprisingly,
the individual message boards were not linked to the indi-
vidual shoes. In fact, a potential buyer of a pair of Nikes was
offered no indication that there were dozens of postings in
the message boards about those exact shoes. Similarly, a
user who happened to stumble across the community area of
the site wouldn’t see an offer to buy the shoes being dis-
cussed. An obvious opportunity of integration squandered.

ASWD_001121.qxd 11/27/00 11:18 AM Page 94

Chapter Three - Structure 97The Art & Sc ience of Web Design96

Remember, architecture must meet
user needs.

The running shoe site is a good
example of the Matrix at a much small-
er scale. In fact, the theoretical Matrix
I’ve been talking about can be used as
an actual tool for accomplishing the
integration between message boards
and products for sale in this scenario.
Imagine an Excel spreadsheet with
services across the top row of cells:
Product, Message board, Professional
Review, etc., and a column of model
numbers from the shoes running down
the left side. The seemingly daunting
task of integration becomes a matter of
filling in the intersecting cells of the
spreadsheets with URLs. For example,
the intersection of “Asics Gel Kayano”
and “Message boards” would be a spe-
cific address. As would the point where
“Brooks Radius 257” and “Professional
Review” intersects. The site architect
would then fill in the rest of the spread-
sheet with the resulting connections,
and then get to work adding the links
to every page—that is, if he or she was
doing this by hand. The spreadsheet in
this example could very well be a table
in a database that was used to automat-
ically generate the correct links on the
correct pages. We’ll talk more about
this kind of dynamic content manage-
ment in Chapter Eight, “Object-
Oriented Publishing.”

Extending the Web
Of course, it would be a lot easier to manage content integra-
tion and architectures like the one I’ve described if content
was richer. In the first chapter, I described the difference
between presentational tags like and purely structural
tags like, say, <COMPANY>. I showed how, when rich semantic
information is added to content, it becomes a lot easier to
manipulate that content and add interesting features.

The Extensible Markup Language (XML) works this
way. Developed by the W3C, XML takes some of the rules
of HTML and generalizes them. Rules like surrounding ele-
ments with angle brackets (< >) and ending tags with a
backward slash (/) have been compiled and standardized.
What this means is that now anyone can create a set of
tags, and anyone else can use them with relative ease.

Lots of people have been creating their own collections
of tags for a while now. Markup languages created as XML
vocabularies have proliferated for things as diverse as ship-
ping invoices to musical notation to voicemail applications.
And once a group has agreed on a set of common tags, shar-
ing data becomes so much easier. In the past, this sort of
data exchange was a daunting task. Say, for example, a
manufacturer wanted to be able to track inventory with one
of its partners. The two companies would have to agree on
a format of the data, how to check if it was valid, how to

A hypothetical example of using an Excel spreadsheet to

record and manage integration of products, services, and con-

tent on an e-commerce Web site.

RoadRunnerShoes.com may have an

incredible selection of gear for runners,

but the site misses a key integration

opportunity. On the left, a page offers a

pair of shoes for sale. On the right, a

lengthy page of postings from actual run-

ners about the merits of these shoes. Yet

the site offers no link between the two.

ASWD_001121.qxd 11/27/00 11:18 AM Page 96

Chapter Three - Structure 99

read and write that data, how send the data back and forth
in a secure way, and on and on. Now, with XML, the two
parties can simply agree on a set of tags. Web servers, freely
available XML parsers, and lots of other common pieces of
infrastructure are already in place.

With this in mind, let’s look again at our running shoe
Web site example. One way the company could add value
to the e-commerce experience of its customers would be to
include reviews from some professional editorial source. But
again, keeping track of the relationships between all of that
content could easily scale out of control—especially consid-
ering the other points of integration that are possible.

The running shoes could be organized with an XML
vocabulary—or “schema” as they’re commonly called—that
would looks something like this:

<product>

<id>401K8-H</id>

<manufacturer>Asics</manufacturer>

<name>Kayano Gel</name>

<price type="retail" currency="US">89.95</price>

</product>

The company could have one, simple, text document for
each product, stored on a Web server with a unique URL.
As could any potential partner. A magazine with reviews of
running shoes, for example, could have a similar collection
of XML documents, each formatted something like this:

<content type="review">

<headline>Getting the Lead Out</headline>

<subhead>Asics speeds up it’s line for 2000</subhead>

<date format=”dd/mm/yyyy”>11/16/1999</date>

<author>Sarah Conner</author>

<product>Asics Kayano Gel</product>

<para>It wasn’t long ago that I first noticed a change

in the way Asics shoes felt…</para>

</content>

With so many different types of data

from so many different groups, how can

we possibly keep track of them all? One

proposal has been to create a reposito-

ry of schemas—in essence a library cat-

alog of all the standard vocabularies in

the world. The idea is simple: as indus-

try organizations and standards bodies

decide on a common format for, say,

newspaper advertising or music nota-

tion, the resulting schema would be

placed in a repository and given a

unique address. That way, if I use a cer-

tain vocabulary in a document, I can

simply include a link to the appropriate

schema. When you visit my page, your

browser can follow the link, see how

the XML is structured, and do what it

needs to do—all on its own.

And, as is almost always the case

when something this big is at stake,

there are two groups developing

schema vocabularies—a sort of open

source industry consortium under the

guise of XML.org, and an alternative

commercial version spearheaded by

none other than Microsoft at biztalk.org.

But where schemas ultimately live

isn’t nearly as interesting as what they

can ultimately do. As we’ve seen in this

chapter, global repositories of data struc-

tures aren’t just exciting for librarians and

scientists, but can radically change the

way we think about our own Web sites.

Schema Repository

One of the schema repositories being developed on the Web. XML.org hosts hun-

dreds of different XML vocabularies for describing everything from musical notation

to molecular compounds.

98

ASWD_001121.qxd 11/27/00 11:18 AM Page 98

Chapter Three - Structure 101The Art & Sc ience of Web Design100

Now, with well structured and described content, both
companies will have a much easier time integrating with
each other. With each offering content based on well
defined industry standards, the process would be straightfor-
ward. The shoe company can download a free, open source
software tool called a parser, which is designed specifically
for XML data. It will work with their Web server, and what-
ever standard scripting languages their engineers are com-
fortable with. And they will write a simple script that will
search through the magazine’s XML looking for each
instance of a “product” tag contained within a “content” tag
that is of type “review”. When it finds a match, this script
will build a link on the appropriate page. Maybe the e-com-
merce site’s architect will suggest this be displayed with a
tab-based interface like Go.com’s Stackonomy. Maybe
they’ll use a Uber-Tree like Snap.

If you have much experience with building Web sites,
you may be thinking, “Well, sure they could do that. But
we’ve always been able to do that with databases or even
comma-separated text files!” And you’d be right. But the
point of XML is not that it opens uncharted technological
capabilities. Rather, the promise of XML is much like the
promise of HTML—it makes something that was fairly
challenging and complicated much, much easier. Before
XML, engineers would have to decide on a data format,
how to check for validity of that data, a communication
protocol, a security mechanism, and much more. Now, they
can simply trade schemas and get back to work.

Early on in the development of the Web, it became clear
that HTML—despite all of its limitations—solved the very
real problem. With a few simple tags, it was suddenly possi-
ble to distribute content to anyone with a connection to
the network in a standard way. The seemingly impenetrable
maze of the Internet gained a consistency that paved the
way for a whole new economy.

Now, with XML, the same starts to become true for all
data. In the very near future, we may forget entirely about
arcane file formats for things like our address book, e-mail

applications, word processors and spreadsheets. Business
may stop worrying about integrating their inventory systems
with their shipping schedules and suppliers. And Web sites
will find it easier and easier to offer the full services their
audience expects.

Fitting It Together
I hope you’ll take away from this discussion a sense of how
important structure really is. Information Architecture is
only one leg in our overall model of Structure, Presentation
and Behavior, but it’s dramatic in how it connects us. It
encompasses not only the most basic organization of a Web
site, but the integration of your content. And it has as much
to do with Web design as pixels, colors, and typography.

ASWD_001121.qxd 11/27/00 11:18 AM Page 100

The Web is a medium of constraint—designers new to the Web are shocked at

the limitations they must face to practice their craft. However, the technology is

changing, and thus the approach to how we put Web interfaces together is

changing. This chapter delves into the biggest issue facing designers today: the

shift from “pixel-based” design to “rule-based” design. No longer can designers

simply pass off a Photoshop sketch to production assistants and ask them to make

the page. Now, designers have to exploit the very nature of the Web—that there

is no such thing as a controlled user environment—and make their designs react

accordingly. Designers are creating rules for their pages, building in constraints

and behaviors, so that their creations mold to the environment in which they’re

displayed. This relates directly to the discussion in the first chapter: Without a

fundamental understanding of how presentational aspects of a solid Web product

interact with the behavioral, there is no hope for success.

Chapter Four

Behavior

Much like a print designer’s knowledge of inks
on paper and the mechanics of printing presses,
a Web designer will need a deep understanding
of the inner workings of Web technologies.

[4]

ASWD_001121.qxd 11/27/00 11:18 AM Page 102

Chapter Four - Behavior 105The Art & Sc ience of Web Design104

I have had the good fortune to work with some incredible
designers throughout the past few years. I’ve been consis-
tently awed by how a good designer can create normalcy
out of chaos; how they can clearly communicate ideas
through the organizing and manipulating of words and pic-
tures. I’ve also been amazed at how often those outside the
discipline of design assume that what designers do is decora-
tion—likely because so much bad design simply is decora-
tion. Good design isn’t. Good design is problem solving.

It is easy to say that the Web has been revolutionary—
that the Web has changed everything and that we’re living
in a new networked world, with a new networked economy,
that traditional thinking is bad, and that just because some-
thing is different it is good. That, I’m afraid, isn’t true.
Rather, the Web is a lens that magnifies and modifies every-
thing we see. Shopping is different when viewed through
this lens. But it is still shopping. E-mail has fundamentally
changed how we communicate with one another and how
businesses get their work done. But it is still communication
and business.

The same goes for design. Viewed through the lens of
the Web, the nature of design is very different, and in this
chapter we’ll talk about how. But it is still design. We
have hundreds of years of tradition to fall back on when
uncovering the foundations of communication through a
visual medium. We don’t need to reinvent the basic rela-
tionships between ideas and layout, between communica-
tion and visual representation. These rules developed over
countless years, and continue to evolve. We need to
understand them. It is one of the crucial steps to becoming
a good designer.

Yet, just because a designer may be proficient at creating
magazine spreads doesn’t mean that designer can draw blue-
prints for a skyscraper. A friend of mine designs cars for
Chrysler. He can tell me more detail about the human fac-
tors of dashboard instrumentation than I thought possible.
Does that make him a good Web designer as well? Probably
not. If he chose to change his career path, he may have an

advantage—automobile design is a pure blend of form and
function married with inherent appreciation for current
style and marketing. Those skills would apply well to what
we do on the Web. But that would only be a head start, not
the unquestioned assumption that he would succeed at cre-
ating interfaces for the Web product.

The same theory applies to print designers. Recently, a
colleague posted to a design mailing list expressing frustra-
tion with a designer with whom he was working. This
designer had a strong print background, and was skilled in
visual communication and graphic art. Yet she refused to
“limit” herself with an understanding of HTML. Her rea-
soning was interesting: She felt that by tying her hands
with the technology of the Web, she would be unable to
create innovative designs. She felt that knowing the medi-
um would limit her creativity.

I call this approach to Web design “Burying Your Head
in the Sand.” When I first started working at Wired maga-
zine, I remember having a long talk with the creative
directors about their process. They were doing amazing
things with print design back then—eight-color printing,
metallic and florescent inks. You know how they were able
to get such amazing results? A deep knowledge of the tech-
nology behind print design. They could go on and on talk-
ing about dot gain with ink X on paper stock Y and how
this would work in natural light but not through the moni-
tors we had available at the time. They could relate the
results of countless tests they’d run on the press that print-
ed the magazine. I couldn’t imagine them saying, “Oh, I
don’t need to know anything about printing. That will just
limit my creativity.”

Can we imagine the same thinking on the Web? It’s a
complicated and tenuous balance. On one hand, one of the
reasons many early Web sites were successful can be traced
to a rebellion of sorts. HTML was exceedingly limited, espe-
cially when compared to the rich graphic tools available to
designers accustomed to print work. As a result, early Web
designers pushed back hard on the basic limitations of the

ASWD_001121.qxd 11/27/00 11:18 AM Page 104

Chapter Four - Behavior 107The Art & Sc ience of Web Design106

Web. While some bemoaned the “decoration” of a “rich
hypertext system,” others demanded a Web that would
accommodate art and science. The results were often stun-
ning examples of visual design created as pure hacks to the
original intentions of HTML and the Web.

But like I said, it’s more complicated than that. It would
be easy to continue to bury our heads in the sand and
ignore the limitations of even today’s Web. But effective
Web designers will also have a deep knowledge of the tech-
nology behind the products they are creating. They will
understand the fundamental possibilities and limitations of
the Web. In the first chapter, we looked at the interaction
between presentation, structure, and behavior in Web prod-
ucts and Web teams. I suggested that the best designers
were the ones that mastered their particular discipline, but
were also multidisciplinary enough to comprehend what
each other corner of the triangle was capable of.

It’s time to turn our attention to behavior—the dynamic
nature of the Web and how it works.

Rule-Based Design
You cannot tell how your Web site will look on other peo-
ple’s screens.

There. I said it. And it’s true. No matter how much con-
trol you are used to when designing for other media, you’re
going to have to give up some of it if you want to be suc-
cessful on the Web. Compare that to designing for print.
Designers of traditional printed material have complete
control over virtually every aspect of their output. They can
choose inks, paper stock, printing method, image resolu-
tion, color values, type treatments, and alignment down to
a hundredth of a point.

Web sites, on the other hand, have variables where print
has absolutes. When Web designers finish a page, the repre-
sentation of that design on their screen is only one possible
variation of millions that are possible. The difference, of
course, is in the distribution. Print designers create a physical
object—a book or magazine or catalog—and send that object

to their audience. They know exactly what is going out.
Conversely, Web designers send the source code—they send
the words and pictures and scripts and structure. Their audi-
ence then uses a computer with a browser to assemble the end
product and display it. Nothing physical ships from producer
to consumer. Hence the variables. When the Web page is
reassembled on the user’s end of the wire, all manner of
change can happen. The user will have
a different size monitor with different
resolution, color representation, and
gamma settings. The user may or may
not have the same fonts installed. There
may even be a different browser or oper-
ating system waiting for the page, intro-
ducing a thousand other variables.

To illustrate this discrepancy, let’s
take a look at the visual appearance of
a Web site in a series of browsers - we’ll
leave out the different devices for now.
Steve Champeon’s “A Jaundiced Eye”
at http://a.jaundicedeye.com/ is a good
example, since Champeon designed
the interface to degrade across different
versions of different browsers. Below,
the page is shown in a browser with
some of the most advanced support for
things like the Cascading Stylesheet
standard: the beta version of Netscape
Navigator 6.0.

Look at the subtle details in this ver-
sion of the design. The dashed borders
around the individual items, and the
spacing between the paragraphs. Now
look at the design in a different browser:
Microsoft’s Internet Explorer 5.0.

Notice the differences? Internet
Explorer doesn’t support all of CSS, so
effects like the dashed border don’t show

Steve Champeon’s “A Jaundiced Eye” in

Netscape Navigator 6.0 rendering cor-

rectly with support for CSS.

The same Web site in a slightly less

standards-compliant browser, Internet

Explorer 5.0.

ASWD_001121.qxd 11/27/00 11:18 AM Page 106

Chapter Four - Behavior 109The Art & Sc ience of Web Design108

up in this interface. It’s still workable—in fact, it’s probably
safe to suggest that most users wouldn’t notice the difference at

all. But it’s not what Champeon had
specified in his code. The browser did a
good job at trying to get close to the
intended rendering, but since it couldn’t,
the design now looks different for differ-
ent visitors to this Web site. Let’s see the
page in an even less sophisticated brows-
er: Netscape Navigator 4.08.

Here the page really starts to look
different. Navigator 4.08 just barely
attempts to support Cascading
Stylesheets, and implements much of it
incorrectly. The result is a page that
misses out on many of the design ele-
ments Champeon intended. The bor-

ders are gone now, and many of the items are misaligned.
Compare this to the first screenshot of the page, and think
back to our print design analogy. If a designer had intended

for the first, but seen the second coming
off the press, would that be acceptable?
I’d guess probably not. But is this lack of
consistency appropriate on the Web?
Only if you are anticipating the results.

Finally, let’s look at the page in a
text-only browser, in this case Lynx on
a machine running the Linux operat-
ing system. The page looks nothing
like it did in the graphical browsers,
but to Champeon’s credit, it is still
quite usable. The content can be read,
and something of the overall structure
is noticeable. The more vain Web
designers among us may shudder to

think of their pages being displayed so coarsely, but this may
very well be the only way some users can get to the con-
tent. At least they can see something.

This all boils down to one simple axiom: You must
design for variables.

Postmodern thinker Derrida suggested that there were
no absolutes—that all truths were based on interpretation
and therefore all perception was relative. Derrida would
have loved the Web. Your fonts won’t work. Your colors will
look different. Your scripts may break. Your design may not
even show up. Nothing you see on your screen is absolute.
How do we cope with this postmodern nightmare?

Embrace the technology, don’t fight it.

The Black Magic of Web Typography
Even the simplest tag reveals this maxim. The tag
allows for rudimentary control over the typography of a
document, allowing control over what typeface is selected,
at what size it should be rendered, and in what color the
type should appear. Simple enough—especially considering
HTML’s bizarre limitation of only seven type sizes. Yet even
this deceptively simple addition to our Web design toolkit
gets us into trouble.

You probably already know that selecting what typeface
should be used to display some text is accomplished by the
following:

But what you enter for “typeface” depends on what your
users have installed on their systems. In other words, some-
thing as fundamental to design as selecting a typeface is
completely variable and dependent on an external. Stated yet
again: You have no control.

So, for the following to work on your Web page:

means that your users will need to have the typeface
Verdana installed on their systems. And what if they don’t?
Then your page will be rendered in the default typeface for

The page with even fewer supported

features as shown in Navigator 4.08.

The page as rendered in the text-only

browser, Lynx.

ASWD_001121.qxd 11/27/00 11:18 AM Page 108

Chapter Four - Behavior 111The Art & Sc ience of Web Design110

the user’s browser, usually some variant of Times Roman.
But if they do, then all is fine. How can you know for sure
that your pages are appearing the way you intended? The
answer again: You can’t be sure.

The developers who came up with the tag saw
this basic limitation and offered a bit of relief. They allowed
for a series of font families to be specified, and they pro-
grammed the browsers to use the first one the user’s system
had available. So instead of pinning all your hopes on your
users’ having Verdana installed, you can provide a sort of
safety net with this code:

Now, when a user views your page, they will see the text
inside this tag as Verdana if it’s installed. If not, the browser
will look for Arial. Still not there? On to Helvetica. And if
none of these faces are present on the user’s computer system,
then the browser will find any san-serif typeface and simply
use that. The browser continues from the most specific to the
most general, progressively searching for a typeface—any type-
face—that will come close to what you actually intended.

HTML is filled with little fallbacks like this. It’s all part
of a basic philosophy of degrading gracefully across all plat-
forms and browsers. We’ll talk more about this in Chapter
Five, “Browsers.”

I bring this up now for an entirely different reason. This
bit of haggling we’re forced to do with typography is a great
example of the control we give up as Web designers. And it
points to the first major lesson when dealing with the
behavior of Web pages: the shift from pixel-based design to
rule-based design.

Getting Liquid
You can see designers struggling with the lack of control
every where you look online. How many times have you
come to a Web site only to be confronted with a screen of
instructions. “This Web site is best viewed with Browser X

version N on a 800 by 600 or higher resolution screen set to
thousands of colors.”

This “Best Viewed With” mentality is thankfully becom-
ing a thing of the past, albeit slowly. Most commercial Web
sites have finally realized that the best way to serve their
audience is to get out of the way and let them accomplish
what they came to do. Still, there is a vestige of designers
who continue to demand that users conform to their whims.
This is a holdover from the old method of design, which I
talked about earlier—the notion of designing physical objects
that get distributed to users. They are, in essence, attempting
to package a pixel-perfect picture of their Web site and ship
it off to their audience—again, a control issue.

The “Best Viewed With” design approach leads to other
hacks as well. These sites are filled with text set in graphic
files—another attempt to exert control over typography. And
while the control may appear to work in the short term, the
result is a Web site that cannot be searched, indexed, trans-
lated, or otherwise manipulated. It’s a losing battle.

As we saw in the example above, we can start to
abandon the absolutes of traditional design and move
towards a more rule-based approach. Rather than spending
countless hours sweating over individual pixels, we should
turn our attention to how page elements behave. Designers
who embrace the technology of the Web are creating inter-
faces that respond to the environment in which they are
displayed. These rules take the form of visual suggestions
rather than maxims. “This headline should be set in
Verdana if it is available, but can scale through these other
choices if that face is not available. In fact, use a sans-serif
face if nothing else is installed on my users’ machines.”

Page layout is another good example of absolutes versus
variables. I’m often asked what size screen we design for.
“All of them,” I say with only a hint of self-righteousness.
It’s true, though. Just as with the variability of typography,
the resolution of my users’ screens can be frustratingly
unpredictable. Even if I could anticipate every monitor size

ASWD_001121.qxd 11/27/00 11:18 AM Page 110

Chapter Four - Behavior 113The Art & Sc ience of Web Design112

in existence, how do I deal with the infinite possibilities for
sizing their actual browser window?

How I cope with this dilemma is telling. I could demand
users yank their window out to the size I require for my layout,
or I could build layouts that respond to any size. One way to
accomplish this is by simply using relative values when defin-
ing my layout, creating “liquid pages.” Let me explain.

Web pages are often designed using HTML tables for
layout. While this may not have been the intent of the
architects of the language, there are certain advantages to
using tables to position elements on the page. Tables follow
a set of heuristics for how they take up screen real estate
when displaying your page. The individual cells of a table
will expand to accommodate their contents. By doing so,
the effect is one of dependencies—each cell is constrained
by both its contents, and also by the contents of the adjoin-
ing cells in the same row and column. Add to this the abili-
ty for cells to span multiple rows or columns, and you get a
sophisticated method of developing page layouts. Especially
when you consider this key fact: cells can take a percentage
value for their width.

How does this relate to rule-based design? Easy. I’ve
already talked about how we’re going to let the user’s envi-
ronment determine the layout of a page. So by creating a
table that contains percentage values, you are essentially let-
ting the user set the layout of the page to be whatever fits the
browser window the most efficiently. Look at this example:

<TABLE>

<TR>

<TD WIDTH="20%">Page Navigation</TD>

<TD WIDTH="80%">Page Contents</TD>

</TR>

</TABLE>

Type that into an HTML page and view it in a browser,
and you’ll see a two-column page-layout that expands and
contracts as you resize the window—a liquid page. Imagine

a column of navigational links taking up 20 percent of the
left side of the page, and paragraphs of content filling up
the other 80 percent on the right.

It’s a simple example, but one that gives us a glimpse of
a whole system of rules that could be put in place for a
particular page layout. The navigation, for example, could
be locked to a specific width, while the content area could
be flexible. If this were being developed for a commercial
site, ad units could float to the right moving with the edge
of the browser. Margins could be created around a docu-
ment and dynamically scaled with the size of the window,
and on and on.

On Stating The Obvious (stating.theobvious.com),
Michael Sippey uses a similar technique to create a liq-
uid layout. His interface is one of minimalist elegance.
An unobtrusive brand logo coupled with a careful eye for
type leads to an inviting and intelligent page layout.
This layout is also a great example of the ease at which
pages can become liquid with a few simple tweaks to the
underlying code.

Michael Sippey’s “Stating the Obvious” uses a very simple

table structure to accomplish a liquid design.

ASWD_001121.qxd 11/27/00 11:18 AM Page 112

Chapter Four - Behavior 115The Art & Sc ience of Web Design114

By looking at the source, we can see the overall structure
of the page is made up of two simple tables, one with the
logo and navigation, another with the contents of the page.
Both tables are set to a relative value, in this case they both
ask for 100 percent of the width of the page. The top table
uses this code to accomplish its goal:

<table width="100%" border=0 cellpadding=0 cellspacing=0>

<tr>

<td valign=top align=left width="1%">

<!-- logo image -->

</td>

<td valign=bottom align=right>

<!-- Navigation links -->

<hr color="#COCOCO" size=1 noshade>

</td>

</tr>

</table>

While far from complicated, the code does include a
couple of interesting tricks. The table cells (defined with
the <td> tags) have no absolute size set for them. However,
the left cell is essentially fixed to the width of the graphic it
contains. By giving that cell a width of one percent, the cell
will try to be as small as it can possibly get. Yet, the browser
can’t make the cell any smaller than the image file within,
so that part of the table gets what is essentially a fixed
width. The other cell has no width at all, and therefore
takes the rest of the available page. Under the navigation
links, Sippey has added a Horizontal Rule (<hr>), which is
set to render in a specific gray that matches the logo
("#C0C0C0"), and without any shadow effects (noshade).
Again, no width is specified for this element, with the result
being a visual element that figures its width on its own.

Under the navigation, the page’s content fits into a simi-
lar table structure, but this time reversed. Sippey accom-
plishes a liquid layout again using this code:

<table width="100%" border=0 cellpadding=0 cellspacing=0>

<tr>

<td width=75 valign=top align=right></td>

<td valign=top align=left>

<!-- page content -->

</td>

<td width=30 valign=top align=right></td>

<td width=170 valign=top align=right>

<!-- commerce links -->

</td>

</tr>

</table>

The page is made up of two content cells: one contain-
ing the page’s content, the other with a few links to recom-
mended media items. Yet, the actual table structure has two
additional cells, one with a width of 75, the other with a
width of 130. These two cells, while devoid of any actual
content, are essentially acting as margins for the content.
They are a fixed width, as is the commerce cell, giving a
fairly rigid construction to the page. The center cell—the
one with the actual content in it—has no width set. Rather,
like the navigation in the table above, this cell is left to
take the rest of the browser window’s available real estate.

The effect is nice: The page feels sized correctly no mat-
ter how big or small your browser window is… to a point.
Scaling down the window too far creates an incredibly nar-
row column for the text of the page. One way to deal with
this is to add a physical constraint to the relatively sized
column. Much like the logo graphic in the top table of this
page, we could insert an image into the content column of
the lower table and give it a width that would define how
small we would allow the column to get. Since this page is
working just fine without the addition of another visual ele-
ment, we could just use a transparent GIF image no bigger
than a single pixel, and stretch it using height and width
tags to the desired size. The code we used before would now
look like this:

ASWD_001121.qxd 11/27/00 11:18 AM Page 114

Chapter Four - Behavior 117The Art & Sc ience of Web Design116

<table width="100%" border=0 cellpadding=0 cellspacing=0>

<tr>

<td width=75 valign=top align=right></td>

<td valign=top align=left>

<img src="spacer.gif" height=1 width=250

alt="spacer">

<!-- page content -->

etc.

Now, when the browser is resized to the point where
the center column would be smaller than 250 pixels, the
cell bumps against the invisible spacer image, and is con-
strained to that size. There are drawbacks to this strategy,
though. The image may be negligibly small, but it

requires a request to the server. That
can slow things down a bit. It may
also be considered bad form to con-
strain any part of the user experience,
especially with a hack like a single-
pixel image. I find it a fair compro-
mise. Users get a flexible representa-
tion of the interface, while designers
can maintain a certain level of visual
control over how their pages are ren-
dered.

A Liquid Application
This functionality need not be limited
to tables, either. Page layouts using
frames can also take relative values for
the height or width of certain regions.
Frames can be sized either with per-
centage values like tables, or with the
use of an asterisk. This syntax tells the
browser to simply use whatever real
estate is left over. So...

<FRAMESET cols="100,*,100" >

<FRAME src="myNavigation.html">

<FRAME src="myDocument.html">

<FRAME src="thirdColumn.html">

</FRAMESET>

simply means that the browser should draw three frames—
two 100 pixel columns fixed at the edges of the page, and
one that takes up however many pixels are left in the center
of the browser window—again, a liquid design.

The examples above, however, are only glimpses into
what is possible within the context of liquid design. Let’s
look at a real world example.

Kvetch.com is fun. It also, from time to time, can be a
little troubling.

The site was designed as a virtual outlet for folks to let
off a little steam. Anonymous users can post just about any-
thing they’re angry about to the site. Interested voyeurs can
peek into any of a half dozen subject areas to see the outra-
geous postings. It’s interesting, in a twisted sort of way.

Designer Derek Powazek built an interface to his
kvetch.com project that would approximate a sort of “com-
plaint application.” The site looks as if it is a control panel
that would exist in the real world—the edges of the inter-
face are curved and lit by a distinctive light source.

Without any sort of constraint, a liquid

interface can get too wide or narrow.

ASWD_001121.qxd 11/27/00 11:18 AM Page 116

Chapter Four - Behavior 119The Art & Sc ience of Web Design118

Controls for the site are rendered as buttons that are
turned by clicking, with an indicator that rotates as a selec-
tion is made.

Where the interface departs from real world physics is its
ability to resize itself to the current browser window.

Kvetch.com uses a fairly complicated
set of nested frames to allow liquidity
both horizontally and vertically. By
setting some frames with absolute val-
ues and others with percentages,
Powazek can determine just what
should expand and collapse, while
controlling the overall effect in place.

Naturally, to achieve this effect,
the borders of the frames have been
set to ‘0’. However, let’s turn them on
for a second to see just how the inter-
face is being composed. We should be
able to get a glimpse of how a liquid
page actually comes together.

Kvetch is made up of a frameset containing three rows.
Each row is then cut into individual frames. This creates a

grid of interface
regions that can
be manipulated
with precision to
create a design
that scales appro-
priately. Here,
you can see how
the rows are
divided to make
up the overall
page.

Then, within
the top and bot-
tom row, the cor-
ner pieces are

given absolute dimensions. They stay locked down, ground-
ing the interface to the corners of the browser windows.

Then, each row in the interface includes relatively sized
pieces to allow the design to scale in the correct direction.
The top and bottom rows include horizontally scaling
frames, while the middle row contains
vertically scaling pieces. The overall
effect is a sort of dynamic picture
frame that surrounds the page’s con-
tent no matter what size the browser.

Finally, the center of the page con-
tains a frame that scales in both direc-
tions, with a relatively sized table
inside that expands and contracts to fit
the space left by the surrounding
frame. The result is a perfectly scaled
interface no matter what size the
browser window.

These rules, as interesting as they
may be to play with, are still very sim-
ple. All we’re doing is addressing cer-
tain areas of a page layout, but nothing
more complex.

But, we also haven’t added the
elegance of Cascading Stylesheets to
this discussion.

Getting Relative with CSS
Thinking back to Chapter One, you’ll
recall our conversation about the
structure, presentation, and behavior
of Web pages. I bring up the triangle
metaphor again because we’re going to
see just how flexible it is.

Remember how I explained the
multidisciplinary nature of our
model? Designers, for example, need
to be experts in the design corner of

Little images placed in key locations

give the Kvetch.com interface the illu-

sion of reality. Rendered with a consis-

tent light source, the edges of the

screen give off a gleaming appearance

while spinning indicator knobs show off

the site’s functionality.

The over frameset for the Kvetch.com interface is made up of

three rows. Each row has unique characteristics that in sum

make up a liquid page.

The corners of the interface stay rigidly

sized.

Building the scalable picture frame with

relatively sized edge pieces.

Filling the rest of the screen with the

center frame and a relatively sized table.

ASWD_001121.qxd 11/27/00 11:18 AM Page 118

Chapter Four - Behavior 121The Art & Sc ience of Web Design120

the triangle. But they also need to branch out and explore
the possibilities of other disciplines. Our conversation so
far about behavior has been almost entirely about style.
And that’s fine. The relationship between how something
looks and how something works can and should be
blurred. It only makes sense that the functional and aes-
thetic qualities of anything—but especially Web
designs—be intimately bound.

Let’s look at an example of this relationship through
developing the behavior of a liquid page by manipulating its
style. We’ll start with an old typographic axiom: The most
readable line lengths for a paragraph are “an alphabet and a
half.” This means that for maximum legibility in a chunk of
content, each line in a paragraph should be roughly 40
characters wide.

How does this interact with our goal of a liquid page?
After all, if we set up a page that behaves by filling the
screen, we’ll loose control of our line lengths, thereby let-
ting go of legibility. Can we have both? Possibly.

First, we’ll start by abandoning the notion of a fixed font
size. CSS gives us lots of typographic control, as we saw in
Chapter Two. But it also gives us some new units of meas-
urement, most notably the em unit.

Unlike points or pixels, which represent an absolute size
for elements defined by them, the em is based on the font—
technically, 1em is meant to represent the width of the low-
ercase “m” character in whatever font you’re using. Most
browsers aren’t this sophisticated, though, and actually just
define 1em as the “default” size. Thus, in Internet Explorer
version 4 and higher, the typeface Verdana set to 1em
would render as 12pt. However, this isn’t a rigid 12pt, but
rather the base of whatever the user has set as the default.
So if I increase my font size in the browser (using the pref-
erences) to 16pt as the default, then 1em becomes 16pt and
everything will scale accordingly.

Now, you may argue that the majority of users never
change their preferences. And you’d be right. Netscape
made more money selling advertising on their home page

(which came up by default in users’ browsers) than from
anything else they ever did. However, we’re attempting to
build pages that serve all of our users, no matter how they
view our pages. I can’t tell you how many times I’ve tried to
read documentation at 3AM after a marathon day of devel-
oping, and cursed the designer who fixed the point size to
an absolute value. So much for my tired eyes.

Anyway, we’re going to start with some text set to 10pt
for our page copy. To approximate this, I do the math: if 1em
= 12pt, then .8em =9.6pt, which the browser will round up
for us, keeping our code simpler. I’ll use this as the basis for
the entire document by putting this in my stylesheet:

body {font-size: .8em; font-family: "Times New Roman",

Times, serif; }

Now, every element on the page I’m creating will inherit
the font size and font family information that I’ve set up for
the <BODY>. By setting up my style this way, I can simply
change the individual characteristics for each element as
they relate to the overall document. Every part of the page
can and should be related to one base unit—a base unit
that is set based on my users’ preferences.

Let’s move on. To incorporate our design axiom of an
alphabet and a half, we’ll set up our content. Since 1em is
essentially one character, setting the width of my para-
graphs to 40em will give me the ideal line length.

P {width: 40em; }

I’d like to lighten up the visual weight of each paragraph
as well, so I’ll increase the leading by setting the line-length
property to a comfortable value. And, I’d like to start with
about a one inch left margin, so with 1em as 12 points, and
knowing that there are roughly 72 points in an inch, I can
set the margins to 72 divided by 12, or 6em.

P {width: 40 em; line-length: 1.4em; margin-left: 6em }

ASWD_001121.qxd 11/27/00 11:18 AM Page 120

Chapter Four - Behavior 123The Art & Sc ience of Web Design122

Inheritance is working for us now. The paragraph is con-
tained within the body, and therefore inherits all the typo-
graphic settings. So our paragraphs will be set in Verdana
(or whatever else is available) and will be rendered at 10pt.

No need to stop with text. I can set the height and
width of images to similar values. I’d like a 3-inch by 1-
inch logo at the top of the page, so I’ll define it through a
class in my stylesheet.

IMG.logo {height: 6em; width: 18em; }

You can probably guess by now what the effect will be
on my page. In a browser with default preferences, my logo
will be 3-inch by 1-inch in the corner of the page. It will
look balanced against the surrounding type and white space
that I’ve carefully designed. However, if a user decides to
bump up the font size, my entire page will react to that set-
ting now. Paragraphs will not only have bigger text, but get
wider as well. The margins and leading will readjust to an
appropriately scaled size to match the new font size. And
my images will stay in the proper proportion, since they’ve
been set to relative values as well. The entire page is
responding to both my desires as the designer, but also to
the unique and individual preferences of my myriad users.

Contrast this to the “best viewed with” method of design
we talked about earlier. Rather than demand that everyone
who views my page conform to my screen resolution or
browser width or type standards, I’m creating pages that
meet my users half way. It’s compromise without adversely
effecting the visual communication inherent in the design
process. My pages have been imbued with behavior—they
can almost act autonomously, while still under my control.

It’s Web design the way it was intended to be.

From Scripts to Screenplays
In what now seems like a past life, I used to be the manag-
ing editor of a series of small community newspapers. We
did stories on car crashes and Little League scores and wed-

dings and city council meetings—with a staff of five. So,
besides being managing editor, I also reported and wrote
stories, took the occasional photograph and laid out all the
pages of the paper. Laying out newspapers can be fun, until
you get to the headlines. Writing and sizing headlines can
be as invigorating as writing haiku all day long—interesting
for a while, but eventually degrading into tedium. The
words of the headlines, you see, had to match the width of
the columns in the stories. With fairly narrow columns and
typically constrained headlines, the job became one of con-
stant word play. Wouldn’t it be wonderful, I would dream, if
I could have a machine that did this for me?

In the CSS example above, I’ve developed a series of
dependencies on the typographic characteristics of the
<BODY> tag—essentially a series of absolute rules that can be
modified through preferences by my users. But what if the
values set on the <BODY> tag were truly relative. What if I
didn’t even know what they were? Could I create a script
that effectively encapsulated the dreary work I used to do at
the newspaper?

We’re about to modify the example above to create a
design that should feel right no matter what environmental
variables are at play. So far, we’ve accounted for the width
of the browser window when scaling table cells, and the
user preferences for setting font size. Now I’ll put them
together and add scripting to dynamically size page ele-
ments based on a slew of variable factors.

The more you explore the behavior of Web pages, the
more you’ll have to occasionally dip into scripting to
achieve the effects you’re after. As I said in Chapter One,
“Foundations,” the interdisciplinary nature of the Web
requires us to branch out as far as we can towards the other
domains. We’re going to be using JavaScript to manipulate
the visual appearance of our pages.

One of the wonderful features of Web scripting lan-
guages like JavaScript is the ability to peer into our users’
worlds. Thus, I can gain access to things like the default
values of many things: what browser they are using, what

ASWD_001121.qxd 11/27/00 11:18 AM Page 122

Chapter Four - Behavior 125The Art & Sc ience of Web Design124

plugins are installed, and even useful data like the screen
resolution and browser window width. The latter are partic-
ularly interesting. If I can tell what size the screen is and
how wide the browser is on that screen, I should be able to
lay out pages based on that knowledge.

To get the window width to lay out our page, we’re going
to have to ask using the native language of the browser.
This language—the vocabulary used to address each and
every aspect and element of a particular page—is called the
Document Object Model, or DOM. The DOM is really just
a shorthand notation for asking the browser questions like,
“Hey, what color is the fourth paragraph on this page?” Or,
in my example, “I need to know the current width of the
browser window in pixels.” Here’s how I ask that question
using JavaScript:

var mySize = document.body.offsetWidth;

This little bit of code sets up a variable for us named
mySize, into which we dump the width of the current
browser window. More specifically, we’ll get the width of
the canvas, or the number of visible horizontal pixels dis-
played in the user’s current window.

Now, we can do some simple calculations to derive a
font size. In the example below, a typical news story from
the Wired News Web site, I’ve used this algorithm to set
the size of the headline:

<script>

var mySize = document.body.offsetWidth/29;

headline.style.fontSize = mySize;

</script>

Let’s look at what’s going on here. First, we’re dealing
with a page that’s been set up with a liquid structure. The
logo and header are locked to the top of the screen, and
sized at 100%, to fill up the entire window. Then, the story
sits in a table cell between two columns—an empty margin

and a collection of narrow advertising units. The two outer
columns are locked to an absolute width, while the story
fills the remaining space. Thus, the layout is responding to
the variable width of the user’s browser.

The headline, however, is what we’re going to change.
The text itself is rendered with this structural code:

<H1 id="headline">Riffage Buys SF Concert Hall</H1>

and this style code:

<style>

body {font-size: .8em; font-family: Verdana, Arial,

Geneva, sans-serif}

H1 {font-family: Verdana, Arial, Helvetica, san-serif;

font-weight: bold;}

</style>

Combining the structure, style, and behavior, we get a
dynamically sized headline. The JavaScript code takes the
width of the canvas by asking the browser for it by way of
the document.body.offsetWidth node in the DOM. But

ASWD_001121.qxd 11/27/00 11:18 AM Page 124

Chapter Four - Behavior 127The Art & Sc ience of Web Design126

before I assign it to a variable, I need to massage it a bit. If
we simply set the size of the headline to the width of the
browser window, it would be enormous. So to scale it down
a bit, I’m dividing this particular headline, “Riffage Buys SF
Concert Hall,” by 29 to get it roughly the right size to fit
the width of the column of text. So when the browser is set
to, say, 750 pixels wide, that number gets divided by 29 and
I’m left with 26 pixels after rounding. In the last line of the
script, I simply tell the browser to look for an element with
the ID of “headline” (which I had already applied to my
<H1>), and set its font-size attribute to whatever is in the
mySize variable. In one fell swoop, I’ve grabbed the window
width, scaled it down, and applied it to my headline. At
that size, the headline fits atop the story just fine. All we
need to do is find an event to trigger the script.

Since I want this resizing event to happen instantly
when the page loads, I’ll create a function, and call that
function with an onLoad event on the body tag. Since I
also want the script to resize my headline as the browser
resizes, I’ll fire the function from that event, as well:

<script>

function change_size() {

var mySize = document.body.offsetWidth/29;

headline.style.fontSize = mySize;

}

</script>

...

<body onLoad="change_size()" onResize="change_size()">

Here’s where it starts to get really interesting. If I were to
resize the browser window, not only would the column of
text get narrower, but the headline would resize itself pro-
portionately to fit. Likewise, as the browser gets larger, the
column widens, and the headline grows bigger and bigger.

Constraining Myself
Of course, we still want to exert some amount of design
control over our presentation. Once you start playing
around with dynamically sized ele-
ments like our headline example
above, you quickly realize how ridicu-
lous the extremes are. For example,
scaling the window down very small,
and suddenly the headline is com-
pletely illegible. And you can see why:
If the window gets below, say, 100 pix-
els, our math begins to fall apart. 100
divided by 29 is just over 3. Three-
pixel type is, to say the least, not the
easiest to read on the screen. We need
some constraints.

To set limits on the scaling of type,
I’m going to add a bit of a reality
check to the script that sizes the head-
line. Before actually applying my
derived value to the font-size of the headline, I’m going to
see if it is either too small or too big. I’ll do this with a cou-
ple of if...else statements—a common programming tech-
nique for adding logic to code.

<script>

function change_size() {

var mySize = document.body.offsetWidth/29;

if (mySize < 14) {

mySize = 14;

} else (mySize > 50) {

mysize = 50;

}

headline.style.fontSize = mySize;

}

</script>

ASWD_001121.qxd 11/27/00 11:18 AM Page 126

Chapter Four - Behavior 129The Art & Sc ience of Web Design128

While this may seem to be getting complicated, it really
isn’t. The new lines above simply tell the browser, “If the
value you’re about to use to set the headline’s font-size is
less than 14 pixels, then set the value to 14. If it’s bigger
than 50 pixels, then just use 50.” Now I can rest assured
that my headline will never get too small to read or ridicu-
lously big. I’ve set up a dynamic—yet constrained—system
for displaying a nicely fitting headline on my story.

Knowing Even Less
I’m getting close to my goal now—a machine that will for-
mat my headlines for me. There is still one variable left to
deal with, and it’s a big one. While the script we’ve been
developing so far has accounted for screen width column
size, as well as set up constraints for big and small extremes,
we still need to tackle one fundamental unknown: the
headline itself.

Wired News, like most other content-heavy Web sites,
doesn’t actually server HTML files when you visit its pages.
Rather, all the content for all the stories is stored in a large
and fairly complicated database. These stories are pulled out
of this database, and then pushed through a publishing sys-
tem that almost magically creates the pages you see in your
browser. We’ll get into the nuts and bolts of this process in
Chapter Eight, “Object-Oriented Publishing” because now
I’m still focused on formatting that headline.

You see, all of the powerful behind-the-scenes technolo-
gy puts designers in a unique predicament. I’ve been talking
about how everything we’ve dealt with thus far has been
relative. Just how little we know about the environment to
which we send our designs is turning out to be a sort of
postmodern nightmare free of any absolute truths whatsoev-
er. And now for the ultimate—after accounting for the wide
variety of user systems and complex preferences, the sad
truth: I don’t even know what my headline will be.

That’s right. I have no idea how many words or charac-
ters will be in that string of text. Sure, we can put con-
straints on our editors and ensure they write headlines with

some manner of consistency. But ultimately, the hundreds
of stories that flow through the newsroom and onto the site
are going to do so automatically. They are going to come
barreling out of a database and into a template, but it will
happen at the speed of light and without so much as a quick
glance from a designer. I therefore need to set up a system
that will deal not only with the constraints my users will
place on the design, but also with content I’ve never seen.
How do I account for this?

Time to add a couple more lines of code to my script.
I’ve already set the size dynamically, and added my con-
straints. Now, I’ll do what I used to do at the newspaper: I’ll
tweak the size based on the available headline.

Once the text comes out of the database and is married
to the template, my script will be able to ask the computer
for one final and crucial piece of information: Just how long
is that headline? I’ll ask this question with these two simple
lines of code:

var myHead = headline.innerHTML;

var targetSize = myHead.length;

I’m adding a couple of new variables to the script here.
The first, myHead, uses a bit of the Document Object
Model to look for that element with the ID of headline,
and grab its contents. So, in our example from earlier, the
value for myHead would be set to “Riffage to Buy SF Music
Venue.” So now even though I don’t know what the head-
line will be when the page is finally rendered at least my
script will. The next line sets a variable named targetSize to
the length of the string; or, in English, the total number of
letters and spaces in the headline. With this information,
we can modify the algorithm that sets the font-size property
of the headline to look like this:

mySize = (document.body.offsetWidth/targetSize) * 1.35;

ASWD_001121.qxd 11/27/00 11:18 AM Page 128

Chapter Four - Behavior 131The Art & Sc ience of Web Design130

Now the final size of the headline will be calculated by
taking the number of pixels in the current browser win-
dow, and dividing by the number of characters in my
headline. You’ll remember that earlier I was simply divid-
ing by 27. Again, we’re replacing an absolute value with a
relative one. So with a browser window at, say, 750 pixels
and the headline from our earlier example coming in at 29
characters, we’re left with a font-size of 25.8 pixels. To get
the font-size to match the specific column in this layout, I
need it to be about 135 percent of what this math gives
me, so I’ve added the multiplication at the end. I take my
25.8px value and run it up to 34.9px and now, as if by
magic, my headline fits atop the column of text as if I’d
designed it from scratch to look just right. If our headline
happened to be 23 characters and the window was scaled
out to 825 pixels wide, we’d end up with 825 divided by
23, then multiplied by 1.35 to give me a size of 48.2 pix-
els, which also fits just fine. And all the while, if my users
scale their browsers too big or too small, I can keep that
headline between 16 and 50 pixels using the if… then
constraints I added earlier.

Here now is the completed script:

<script>

function change_size() {

var myHead = headline.innerHTML;

var targetSize = myHead.length;

var mySize = (document.body.offsetWidth/targetSize) *1.35;

if (mySize < 14) {

mySize = 14;

} else if (mySize > 50) {

mySize = 50;

}

headline.style.fontSize = mySize;

}

</script>

And you can see how it works in these screenshots of
our story with a variety of headlines:

Building the Virtual Designer
I didn’t include this script in this chapter to give you a
working example of how to create scalable headlines. In
fact, this script uses some proprietary additions to the DOM

The script is resizing each headline based not only on the

available space, but according to how many characters is in

each one. Now, any headline will fit with any column width—

a truly liquid page.

ASWD_001121.qxd 11/27/00 11:18 AM Page 130

Chapter Four - Behavior 133The Art & Sc ience of Web Design132

included by Microsoft in their Internet Explorer browser.
Using it in other browsers like Netscape Navigator will
cause an obtuse error message to appear. I included it
here—and spent the time deconstructing every last detail—
to show you how designers are going to have to evolve to
embrace the behavior of Web pages as well as the techno-
logy behind those behaviors. A good eye will remain
mandatory in the discipline. A designer’s deep understand-
ing of the fundamentals of visual communication will never
go away. But much like a magazine designer’s knowledge of
inks on paper and the mechanics of printing presses, a Web
designer will need a deep understanding of the inner work-
ings of Web technologies.

This script, then, is an example of a much bigger idea.
Throughout this chapter, we’ve been looking at examples of
rule-based design, and how the traditional notion of pixel-
based design is rapidly being left behind. But here’s the big
picture: Good designers are harnessing the technology
available to them and using it to encode the process they
use to do good design. A pixel-based designer spends time
sizing a headline perfectly to an absolute column and page
width. A rule-based designer spends time converting that
task to a browser-based script.

In our example, I converted one design process for sizing
headlines into one script that does it for me. Now imagine
the myriad other design decisions that a news story page
may need. I’ve only scratched the surface of page layout,
branding, advertising, internal and external navigation, and
everything else that falls into that particular page. Extrapo-
late even further to different pages on the site, and then to
the many different types of sites—what rules would need to
be encoded for a search engine, or an e-commerce shopping
cart, or a stock portfolio tracking application, or an artist’s
portfolio, or anything else?

Go Build It
I just walked you through a very detailed description of a
fairly simple bit of JavaScript. It’s important to remember

that what the script was doing is much more interesting
that how it accomplished the task. And that’s what I want
you to focus on. Can you communicate the functionality of
a particular design goal with the developers on your team?
Or will you dig into the syntax and fundamentals of the
various Web technologies and produce the behavior of Web
pages yourself? The answer will be different for every design
and every designer, but each will be somewhere on that
technical continuum.

Regardless, at least we’ll all know how to get our hands
dirty and our heads out of the sand.

ASWD_001121.qxd 11/27/00 11:18 AM Page 132

Chapter Five

Browsers

Just as your watch keeps time, your telephone
can call other phones, and your stereo accepts
all compact discs, so too should all browsers
show all Web pages.

The infamous browser wars have taken their toll. Not only is the installed base of

clients completely fractured between old versions and competing vendors, but

each browser has its own bugs and peculiarities. For the hapless Web designer,

the outlook is bleak. Do I have to make multiple versions of my site? How can I

afford to do that? Am I resigned to a lowest-common-denominator version of my

brilliant design ideas? This chapter digs into the reasons why the browsers are so

different, how Web developers can form a strategy for dealing with this mess, and

what basic techniques they can use to develop around the lack of support for

basic standards. Finally, we’ll look at what we can do to help fix this, and how

the browser makers are responding.

[5]

ASWD_001121.qxd 11/27/00 11:18 AM Page 134

Chapter Five - Browsers 137The Art & Sc ience of Web Design136

Isn’t it amazing that the Internet works? It’s easy to forget
that sometimes. We sit at our computers using our browsers
with e-mail applications in the background, communicating
effortlessly with computers around the world. We take for
granted that we can fire off a message to virtually anyone
and they will be able to read it. Yet, that works only
because of the protocols beneath the surface, all glued
together in a fantastic network of connectivity.

Thankfully, most of us don’t have to muck around with
the underlying code that makes the Internet function; we
can keep all that complexity abstract by using our windows
and wizards. In fact, we’re so far removed from the underly-
ing protocols that we can completely forget that the
Internet isn’t really a physical thing, but simply a collec-
tion of standards to which everyone has agreed. Without
standards, though, there would be no Internet. The
Internet is standards.

Why, then, are we having such a difficult time with
the Web? The arguments and politics of Web standards
have raged behind the scenes almost since the birth of
the first browsers.

Recently, there has been an increased focus on the stan-
dards—or, rather, the lack of compliance with standards—
that have helped popularize the Web and make it a com-
modity of daily life. From a grassroots level, developers
have begun to air their frustrations with the lack of basic
interoperability between browsers—or even versions of the
same browser. “Why is this so hard?” they ask. “Why do I
have to spend so much time getting my pages to work on
every browser?”

The timing of these cries, which echo through the trade
publications and technical conferences, is noteworthy. The
two major browser developers, Microsoft and Netscape, for
years have been turning up the marketing hype for the next
versions of their client software. “New features! New tech-
nologies! New additions to the W3C standards!” the brows-
er vendors shout. “Buggy code! Incomplete implementa-
tions! Inconsistent rendering!” we shout back.

Let’s take a look at the historic foundations on which
the browsers were built, the sorry state of affairs for today’s
Web developers, and what we can do sort to things out.

Innovation and Legacy
Interoperability is a long tradition throughout the Internet
community. As long as there have been computers talking
to one another, there have been engineers arguing about
the best way to accomplish this.

The unspoken rule worked something like this: A prob-
lem would arise (“We need to be able to read e-mail on any
system”), someone would make a proposal (“E-mail headers
should be formatted this way”), and then someone would
hack out code proving it worked. The developers involved
in this conversation would look at the code, discuss the
spec, and then revise it a few times until they were satisfied.
Then someone would type the whole thing up and release it
to the public. Generally, a Request for Comments (RFC)
would be posted on a universally accessible server for any-
one to use as a guide for developing interoperable software.

Then came the Web. The outlandish growth we’ve
experienced over the past few years not only made the stan-
dards process difficult, but changed the rules entirely.
Companies developing Web software had to ship new tech-
nologies prematurely (in many cases, in order to maintain a
competitive advantage—and fictional stock prices), forgo-
ing the technical analysis that’s so important to the devel-
opment process. Things were suddenly happening in
“Internet Time.”

The result of this shift is painfully obvious. Poorly
planned “enhancements” to the defined standards are
impregnated in millions of copies of rushed software. Look
at what happened to Netscape, for example. Responding to
customer demand for visual control in HTML, Netscape
added the tag to its Navigator browser. Although the
power and flexibility of Cascading Stylesheets had been
extensively discussed at that time, Netscape snubbed the
standards process and took the easy route, permanently

ASWD_001121.qxd 11/27/00 11:18 AM Page 136

Chapter Five - Browsers 139The Art & Sc ience of Web Design138

hurting the Web. Sure, designers could style their text in
any of seven predefined sizes, but the semantic meaning of
headlines, captions, and subheads were gone forever.

Need more proof? Look at the plethora of ways you can
add other media types to your page. Along with the now
standard <OBJECT> tag, we also have <EMBED>, <INSERT>, <APP>,
<APPLET>, and , all of which do the exact same thing.

The frenzied pace of innovation and new-feature devel-
opment started almost from the beginning. The leap from
Netscape’s first release to version 2.0 was dramatic, with
engineers adding new features (font tags, frames) as fast as
they could code them. When Microsoft jumped in with
Internet Explorer, the race was on. With each new browser
release, Netscape and Microsoft upped the ante. Both
scrambled to offer major new features with each version,
hoping to prove to the world once and for all which brows-
er was better.

What’s the problem? Web developers, Web users, and
Web browser marketing managers all have their own defini-
tions of better, which makes for quite a few spectacular mis-
takes. And, the browser companies have promised to sup-
port all their blunders.

Over and over again, the browser companies tell us that
they’re committed to supporting their content providers and
application developers. This, they smugly tell us, is an indi-
cation of the high level of support they’ll provide for devel-
opers who have invested in the browser’s cutting-edge tech-
nologies. But really it just means that the browser
companies are locked into supporting every mistake they’ve
ever made.

Rather than weed out poorly realized technology, the
browser companies have resorted to bulky workarounds and
add-ons. And the result? We have the bug-ridden, 16-MB-
download behemoths we’re stuck with today.

After suffering through the side-effects of the browser
companies’ misguided attempts at “support,” developers are
now stepping in and asking the most important question:
“What should we support?”

Should we just give up?
The reality is that there are as many different views of your
site as there are users. Depressing thought, isn’t it? (The
very notion of having your content, your brand, your very
online identity being “interpreted” in millions of ways can
strike fear in the most competent creative director or dili-
gent production assistant. So what can we do?

First, it may help to know that you are not alone. In
fact, Jupiter Communications recently released a report that
surveyed the top 100 commercial Web sites. Jupiter found
some disturbing statistics: Nearly two-thirds of these sites
were building multiple versions of their Web sites. Those
sites spend up to 40 percent of their development resources
on building those versions. And very few of the companies
polled had any intention of using “new browser technology”
on their sites in the near future.

The implications are even worse. How much is it costing
the Web industry to make up for the fact that browsers
can’t get even the most basic standards implemented cor-
rectly? How much stifling of innovation is taking place
because companies are unwilling to experiment with new
technology at the expense of legacy browsers?

It’s easy to complain—and trust me, we’ll complain in
this chapter. It’s much more difficult to do something about
it. Let’s take a look at how to deal with legacy browsers,
inconsistent standards support, and the tremendous devel-
opmental overhead it takes to deal with the dizzying array
of browsers that are out there.

Understanding the Dysfunction
In order to cope with the fractured world of browsers, you’ll
need an understanding of how broken things really are.
We’ll start broadly by looking at the industry as a whole,
and then narrow the focus to your site in particular. You’ll
need to dig through a lot of information to make the right
choices for your content and your audience—then we’ll
move from trends to specifics in order to accomplish that.

Here are the questions you will need to ask:

ASWD_001121.qxd 11/27/00 11:18 AM Page 138

The Art & Sc ience of Web Design140

• What browsers are out there?
• What browsers support which tags and technologies?
• How many in my audience are using each browser?

After you are armed with this information, you should
be able to make informed choices about your development
strategy. In particular, we will be looking at ways to find out
which features you should be incorporating in your designs,
and how to get the right features for the right browsers.

Why so many?
If you’ve done any amount of development on the Web,
you’ve probably wished that there was a world with only
one browser. “If only I didn’t have to deal with all of this
complexity. Wouldn’t that be wonderful!”

No, actually. It would be the worst possible outcome for
our Web.

The Web’s very popularity can be attributed in part to its
diversity. One of the basic design goals of the nascent World
Wide Web was that anyone with any type of computer could
access at least some view of your information. To accomplish
that, the command-line Internet needed three converging
factors in order to succeed: A uniform way to address not
only computers connected to the Net, but the individual
resources that were on them, a method for transmitting
those resources, and a method for displaying them.

The first came in the form of Uniform Resource
Locators, known affectionately as URLs. Without them,
Net surfers would need to remember not only domain
names or IP addresses, but they also would have to decode
the applications running on those servers. Today, Web
browsers give us a consistent interface to all Net resources,
freeing us from the peculiarities of Telnet log-ins and menu
navigation.

We won’t spend much time on the second necessity.
Suffice it to say that the Hypertext Transfer Protocol, more
commonly known as HTTP, is saving everybody a lot of
grief, despite its many shortcomings. Having all browsers

141

Despite its current ubiquity, we didn’t

always have the Web. We take for grant-

ed the instant access to information, the

single application with which we con-

sume that information, and the naviga-

tional shortcuts that get us there.

But there was a time before search

engines, bookmarks, and the “click-

here” access that we have today. In fact,

it wasn’t all that long ago that the only

way we could do file transfers was by

typing IP numbers into an FTP client,

and many resources on the Net were

only accessible through something

called Telnet.

In the multi-user, command-line

world of Unix, gaining access to another

machine was done with Telnet. You’d

type in the address, log in, and you’d

be connected as if you were sitting at

that machine. Since there were very few

ways to offer interactive information

before the Web, the few services that

did exist often made use of Telnet. And

if you look hard enough, you can still

find a couple of these relics still surviv-

ing today.

A good example of how the Net used

to work can be found at the University

of Michigan’s Weather Underground,

available by pointing a Telnet client at

um-weather.sprl.umich.edu. Try navigat-

ing through the hierarchy of weather

data. See how long it takes to move up

and down the menu system. Marvel at

how our Web interfaces work today

compared to the terminal-based systems

of yesteryear.

Beyond the nostalgia of Telnet

applications, you can find basic

Information Architectures still in use

today with bare-bones interfaces.

Things may be easier today, but they

are by no means new.

Before There Were Browsers

The University of Michigan’s Weather Underground system is still available via a tel-

net interface—interesting if only from a historical perspective.

ASWD_001121.qxd 11/27/00 11:18 AM Page 140

Chapter Five - Browsers 143The Art & Sc ience of Web Design142

and all servers speak the same language behind the scenes
may very well be the most important reason we’re all using
the Web today.

But what concerns us here is the final converging factor:
A standard way of displaying Web resources.

The Hypertext Markup Language was designed to be
simple, forgivable, and viewable on any type of computer.
And that was supposed to mean everyone—from dumb ter-
minals wired to mainframes to the fastest, highest-resolu-
tion, multimedia-capable desktop machines and even wire-
less cell phones.

While this may sound like an admirable goal, the harsh
reality played out significantly differently. Browsers got pop-
ular in a hurry, and those making browsers responded to
their customers’ demands by adding tags and technologies as
quickly as they could. Soon, the world was filled with hun-
dreds of browsers—as was the intent of HTML all along—
but those browsers were rendering content in hundreds of
different ways. And while the Web should scale to accom-
modate any surfer, the fact is that most document authors
want to maintain at least a modicum of control over the
appearance of their documents. Today, we’re left with a
diverse yet fractioned medium on which to base our prod-
ucts. With so little consistency across browsers, you may
find yourself ready to throw up your hands and surrender.
Why bother?

I’ll tell you why. The solution isn’t all that hard.

Understanding the Problem
As I mentioned before, there is a confusing variety of
browsers, versions, computer platforms, and other variables
that conspire to make your site look broken somewhere,
somehow. Factor into all of that the reality that no browser
is bug free. You may actually be doing the right thing and still
your site looks broken. What to do?

You could bury your head in the sand and simply build
sites that make use of the tiny subset of tags that work in all
browsers. If you’re comfortable with <H1> and <P>, then

you’re pretty much set. You’re site will look remarkably like
an academic paper, but it will work everywhere and you’ll
be able to sleep at night knowing your site is rendering with
perfection across the Web.

Most of us, however, would rather build a site that com-
municates visually as well as structurally—a site with an
appropriate amount of branding and identity. This means
taking chances—calculated risks, actually—with the tags
and technologies you incorporate into your design. It also
means much more work for you, since you’ll not only have
to build multiple versions of your site to ensure compatibili-
ty, you’ll need to discover who needs to get what too.

Don’t worry, it’s not as hard as it sounds. Quite a few
people have done this before, and many of them now share
the tools they’ve developed to help keep track of all of this.
Let’s dig in.

We’re going to start by looking very broadly at the
industry as a whole, both by analyzing a bit of historical
data, and then seeing how that data is at work in today’s
browser statistics. That should give us a good idea how
many people are using which browsers across the Web.
More importantly, though, is what your audience is using on
your site. To get at that information, we’ll dig into some
lightweight server-log analyses tools. With that knowledge
in mind, you can start to make decisions about which fea-
tures you should incorporate into your Web site. Finally,
we’ll dig into how to serve multiple interfaces to multiple
browsers, allowing you to explore some cutting-edge tech-
nology while still providing a usable experience for your
entire audience.

Scouting the Industry
Brace yourself: I’m going to throw a very disturbing statistic
at you. At the time of this writing, the Yahoo category
“Home > Computers and Internet > Software > Internet >
World Wide Web > Browsers” contained 148 distinct and
separate browser listings. And that doesn’t take into
account the scores of versions each individual browser may

ASWD_001121.qxd 11/27/00 11:18 AM Page 142

Chapter Five - Browsers 145The Art & Sc ience of Web Design144

have. Netscape’s Navigator, for example, has released
browsers both for 16-bit and 32-bit machines running
Windows, the Macintosh, and a variety of Unix flavors. For
each one of those platforms, there were dozens of versions
over the years, from early betas to the differences between
“standard” and “gold” releases. And it doesn’t stop at “tra-
ditional” releases for mainstream desktop computers.
People have developed browsers for the handheld Palm
Pilot crowd, Braille readers for seeing impaired users,
clients for those Internet terminals in airports. Have you
ever seen a gas pump with a monitor on it as you’re filling
your car? Yup, there’s an old version of Mosaic for it. It’s a
fractal problem: The more browsers you look for, the more
you’ll find.

Thankfully, we can pare that number down a bit. Our
basic strategy, which we’ll get to in more detail later, is to
divide and conquer. We’ll determine how many versions of

our sites we can manage, and create
“buckets” into which we can group
particular browsers. In its easiest form,
our strategy will call for a high-end
version and a low-end version, with
the thousands of browser combinations
neatly organized into those two buck-
ets, with the appropriate interfaces
being served to each.

So, back to the task at hand—get-
ting a handle on the vast number of
different browsers. It’s probably not a
surprise that, while there are lots of
browsers, only a few are being used by
a substantial percentage of your audi-
ence. In fact, browser usage follows a
Zipf curve pretty closely. A Zipf curve
merely shows data that cluster around

a few popular choices, even though the data being displayed
have many, many possible selections.

What does this mean for your site? Well, despite the fact
that industry browser reports show browsers for the
Commodore Amiga and early beta versions of Navigator in
circulation, the reality is that they make up an infinitely
small percentage of total page views
and user sessions across the Web. So
you should ignore them, right? Wrong.
Our pages should accommodate every-
one, but we’ll get to that.

What are most people using then?
It’s safe to say that they are, in general,
sticking to either Netscape Navigator
or Microsoft’s Internet Explorer. Let’s
look at how the numbers are stacking
up at the moment. On the popular
developer site BrowserWatch
(www.browserwatch.com), the site’s care-
taker Dave Garaffa maintains a page
detailing the browsers that visit his
site. As of this writing, Internet
Explorer was being used by 62.6 per-
cent of his audience, while Netscape
was holding with 21.7 percent. Thus,
over 86 percent of this particular audi-
ence is using one of the two leading
commercial browsers, with the remain-
ing 14 percent trailing off across
dozens of others.

But remember, the BrowserWatch
audience is skewed towards developers
who are looking for information on
browsers—a very specific group of peo-
ple who may have significantly differ-
ent tastes in software adoption than
your audience. To get an even more
accurate picture of the rest of the
Web, we can look to The Counter (www.thecounter.com).
This site offers a typical free service: The page counter pop-

BROWSERS IN USE

U
S
ER

S

Who’s surfing with what? The fact is,

most people use the most popular

browsers, but the trail of browsers in

use is incredibly long.

Dave Garaffa’s BrowserWatch Web site

not only collects browser usage statis-

tics, but is a good source of up-to-the-

minute industry news on what Web

client software is being released.

ASWD_001121.qxd 11/27/00 11:18 AM Page 144

Chapter Five - Browsers 147The Art & Sc ience of Web Design146

ular with so many amateur Web sites that are willing to dis-
play to the world how much (or, more often, how little)
traffic they are getting. You’ve probably seen the little
images that look like odometers proclaiming “This site has
been visited 0012 times!” What The Counter does differ-
ently, though, is keep track of who is viewing what across
the millions of counters they’ve distributed. They then
aggregate that information and offer it publicly as a free
service to Web developers. Their statistics show even finer
grain detail than BrowserWatch. As of this writing,
Microsoft is leading. If we add up the IE numbers, we see
that the Microsoft browser is being used by a whopping 81

percent of the browsing public—a radically different num-
ber than BrowserWatch, and probably a more accurate snap-
shot of what is really happening on the Web. I’m showing
you this discrepancy for a reason, though. Your site can also
be dramatically different from industry numbers—your audi-
ence is your own.

We’re now equipped to follow the industry numbers for
browser usage. But gathering data on Web-wide usage is
only half the equation—we also need to look at new ver-
sions, old versions, and the rate at which browsers are
upgraded. There are few things more tantalizing to a Web
designer than the promise of new browsers and new fea-
tures. And there is nothing more disheartening than the
inability to use them. Why? If your users don’t have sup-
porting browsers, then nobody will see what you’ve done.
So again we ask, “What to do?”

Old Browsers Never Die
Never has a piece of software seen such rapid adoption as
the first version of the free Netscape browser. It was Fall of
1994 and the Web was young. The dominant browser at the
time, was a graduate project from the National Center for
Super Computing Applications at the University of Illinois,
Champaign-Urbana. “NCSA Mosaic” was exceedingly pop-
ular, since it was the first browser capable of showing inline
images. But when Netscape Communication’s “Mozilla”
browser hit the Web, everything changed. Nearly
overnight, the new browser commandeered a tremendous
user base. Everyone who was online at the time, it seemed,
switched to Netscape.

That overnight conversion didn’t quite keep up, howev-
er. New versions of the browser were released almost
monthly. It seemed like a full-time job just downloading
and installing new versions of the Netscape software. Then,
a year or so later, Microsoft joined the fray with its Internet
Explorer browser. They, too, iterated with gusto. A couple
of years into the so-called “browser wars” and it was impos-
sible to keep the myriad of versions straight.

Free statistics, offered for the good of the industry—and the

associated publicity, of course. The Counter shows just how

dramatically audience plays into browser usage numbers.

Here, with a sample from the broader Web, we see Microsoft

in the clear majority of Web clients.

ASWD_001121.qxd 11/27/00 11:18 AM Page 146

Chapter Five - Browsers 149The Art & Sc ience of Web Design148

To gain any sort of historical perspective on browser
adoption by a general Web audience, we need to look at
years rather than versions. The chart below shows how the
statistics have played out over the last 5 years. Note that
these are aggregate numbers based on features roughly
assigned to version numbers. That is, Netscape’s second ver-
sion was roughly equivalent to Microsoft’s. Netscape 4 and
IE4, likewise, held similarly equal feature sets (with wildly
divergent quality, but more on that later). So it’s fair to look
at how the numbered versions waxed and waned in usage
throughout the last decade.

As we’ve seen, the popularity of the first version of
Netscape’s browser back in 1994 skyrocketed into the 90th

percentile nearly overnight. But the same certainly didn’t
happen with the second version. What we saw instead was
a steady 5 to 10 percent attrition to new versions per
month. So when a new, major release of the browser hit, it
could take nearly 16 months for the old version to finally go
away. Except that it didn’t. Let me explain.

Not everyone, unfortunately, has a choice when it comes
to browsers. While most of the readers of a book like this
install and delete new software with impunity, there are
scores of users who don’t have the same desktop freedom.
Many users are at the whim of their “technology managers.”
These are the folks who do the remarkable job of keeping
corporate information systems running efficiently. Thus,
they have the power to decide which software will be rolled
out across their networks, and when. So, just because
Netscape or Microsoft touts the features of its brand new
browser doesn’t mean these managers will upgrade. And
when these folks are making decisions for tens of thousands
of desktops in the world’s largest corporations, the numbers
can drag on for what seems like an eternity.

The slow upgrade effect was compounded by the 1997
release of the version 4 browsers. The battle for Web
supremacy was raging between Netscape and Microsoft. The
respective companies squared off on the desktop: Both pro-
claimed that their browsers would support nearly complete
integration into your computer’s operating system. When
they both finally released their shiny new browsers, the
result was a resounding thud from users across the Web.
Suddenly upgrading your simple Web browser meant
upgrading your entire operating system—something most
people (and almost all companies) don’t take very lightly at
all. The conversion rate slowed down considerably; so slow
that we’ve only recently caught up.

And don’t forget home users. Without the support of a
corporate helpdesk, many home users are rightly hesitant to
mess with a tenuous computer system that happens to be
working just fine right now, thank you very much. We often
make the false assumption that our amazing, dynamic inter-

As new versions of browsers are

released, users upgrade rapidly. But

they don’t all upgrade, as this chart

shows. On the left is the percentage of

Web users surfing with any particular

browser. Along the bottom, the progres-

sion of time. See how each previous

version of a browser trails on through

the years? Since not every one can or

will upgrade, no browser will ever fully

eclipse the others. The result is a frac-

tured user base.

Browser Upgrades Through the Years

1995 1996 1997 1998 1999 2000
0%

20%

40%

60%

80%

100%

1.0

2.0

3.0

4.0

5.0

6.0

ASWD_001121.qxd 11/27/00 11:18 AM Page 148

Chapter Five - Browsers 151The Art & Sc ience of Web Design150

faces are worth an upgrade; but users, frankly, often could
care less. In fact, many users don’t even realize they can
install a new browser. Upgrades only occur, then, when they
get a new machine with a new browser pre-installed—once
every 5 or so years. Finally, don’t forget about the users out
there who simply can’t use a new browser. Old computers
run old software, and no matter how emphatically the hard-
ware companies urge us to ditch the tired, old systems,
many don’t or can’t. The result: The old browsers persist.

Looking back at the browser adoption chart, we can see
these factors at play. Each new version of the browsers peaks
pretty quickly as eager and technologically sophisticated
users upgrade. But the trails left by the older versions per-
sist. And notice that each peak is a little lower than the
last. The situation gets messier with each release, as more
and more old browsers mix in with the new.

But let’s be optimistic. Looking back at The Counter’s
charts, we can see that the vast majority of users are cur-
rently using a browser with a version number of 4.0 or high-
er. In fact the number is higher than 90 percent, which
means we can start thinking of version numbers much like
browser versions—we can generalize.

Discover Your Numbers
Great, we’ve got a general understanding of which browsers
and which versions are being used out there on the great
big Web. But what about your site? Do your audience num-
bers deviate from the general numbers? How can you tell?

There are a number of increasingly sophisticated tools
that you can use to get this information. All of them work
on the same basic premise: Every time someone visits a
page on your site, his or her browser requests the page and
associated images, plus whatever else is linked to that
page—be it stylesheets or multimedia objects. As the server
does its job and sends this stuff over to your user, it also
makes a record of its activity. This server log file is an
incredibly detailed account of all activity across your site,

and it’s a gold mine once you’ve got the appropriate tools
for uncovering its wealth.

For our discussion, however, we’re going to ignore the
majority of this data and focus just on what browsers are
being identified by your server. Each line in a server log
contains information like what file is being requested, the
time and date, and much more—including the nugget we’re
after: the User Agent String.

“User Agent” is merely a bit of jargon that means the
piece of software doing the requesting from the server;
“String” is the stamp left in the log with the identifying
characteristics. The majority of the time this is a recogniza-
ble browser, but occasionally it’s not. Search engine spiders,
proxy servers, and other devices suck down Web pages too,
so hence the incredibly accurate jargon ... engineers like
this sort of thing.

Here’s a fairly typical User Agent String:

Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)

Here’s what this all means: The “Mozilla” in there is
legacy, pure and simple. It comes from the early days when
Netscape first released their browser under that moniker.
Since Webmasters of the time were eager to make use of the
new capabilities of this browser, they would target their
pages (much as we’re about to learn to do) to Mozilla.
When competing browsers came about, most notably
Internet Explorer from Microsoft, they too carried these
capabilities, and wanted pages highlighting these capabili-
ties to display correctly. So they also put the string
“Mozilla” in their User Agent identification. Thus, over
time, identifying yourself as Mozilla became a sort of infor-
mal standard. Everyone did it, so the only way to distin-
guish your browser from the rest was to include a parenthet-
ical comment that actually labeled your client. In the
example above, we can distinguish this browser as Internet
Explorer, version 4.01, running on Windows 98.

ASWD_001121.qxd 11/27/00 11:18 AM Page 150

The Art & Sc ience of Web Design152

As I mentioned, this chunk of identification gets
stamped into your server log and is waiting patiently to be
of use in your research. Most log analyses tools will give you
some measure of control over how this is done, usually how
specific you’d like your report to be. You can generally get
just browser numbers, just version numbers, or other levels
of detail.

The Numbers Game
There are a couple of ways to get at this information,
depending on whether you actually can access your server
logs. At issue is how much control you have over your serv-
er. If you’re the one managing the systems that serve your
Web pages, then getting those logs is a relatively straight-
forward task. If, however, your servers are managed by
someone else in your organization, or—as is more frequently
the case—your site is hosted by a service provider or one of
the Web’s many free homepage services, then you’ll need to
use a different method for digging into the wonderful world
of server statistics. Regardless, the process isn’t all that diffi-
cult. Let’s look at the different approaches.

We’ll start with those of you fortunate enough to have
access to your own server logs. For you, the options are
more varied and powerful. First, you’ll have to decide
whether to install a log analysis tool that looks directly at
your data, or to pull the logs over to a desktop machine and
do the analysis there. Products like Hit List from Accrue
Software, Inc. or the variety of tools available from
WebTrends Corporation are examples of tools that look
directly at your data. They can be installed on servers and
generate reports as often as you like, with near infinite cus-
tomization options. You can, for example, use tools like this
to create custom reports on just which browsers are being
used and by whom, and then have that report run automati-
cally and e-mail the results to you every Monday morning.
Intelligence delivered to your inbox, as it were.

If you can’t install the software on a server, opt for a free
log-parsing tool like Analog, or The Webalizer (which is

153

It may feel like a relic, but the log-

analysis tool Analog is a powerful—and

free—tool for quickly extracting valuable

information from the ocean of data in

your server logs.

You can pick up a copy of Analog at

http://www.analog.cx/. Once you’ve

downloaded and installed it, there are a

few simple steps to get it working.

Open the configuration file in a text edi-

tor. (Sorry, you’ll have to do without

such comforts as a GUI with preferences

in dialog boxes.) The settings contained

within allow you a tremendous amount

of customization, but we’re going to

focus on browser statistics for now. Tell

the application where your server logs

are, either on the network or where you

copied them over to your local machine.

Then, change the browser report setting

to your preference: either detailed or a

quick overview. To do this, you’ll need

to set the BROWSER or FULLBROWSER direc-

tives to ON in the analog.cfg file. Now

set Analog to work, sit back, and wait

for the goodies.

Your report will end up in Analog’s

default folder (unless you changed that

when you configured) as report.html. It

should be in HTML format, which means

you can simply open it up in a browser

and have a look. Below all the traffic

reports, you’ll find the exact number of

browsers in use on your site. You can

now start to make decisions about your

target audience and what technologies

you can safely use on your site.

Set up a little scheduler to run the

report with new data regularly, and

you’ll have all the information you’ll

need with a minimal amount of effort—

something we all strive for.

Running Reports with Analog

Analog reports may not be pretty to

look at, but they do contain valuable

information. The report here shows an

overview of browser usage.

Traffic reports, right in your browser.

This detail of browser version usage

can be easily dumped into a spread-

sheet application for manipulation and

chart generation.

ASWD_001121.qxd 11/27/00 11:18 AM Page 152

Chapter Five - Browsers 155The Art & Sc ience of Web Design154

available from www.mrunix.net/webalizer). These are simple
software packages that you can use on your personal com-
puter. Once installed, you’ll need to get access to your serv-
er logs—either point the tool at them on a server some-
where, or download the actual data to your machine and set
the software running. Again, the choices for reporting are
almost overwhelming.

Finally, if you don’t have access to your logs, don’t
worry. You can still find out who is using your site and with
what client—but you won’t have the flexibility or cus-
tomization options of dedicated software packages. There
are a number of free services on the Web that can track
your site’s usage for you. You’ll generally need to put some
sort of “counter” or other bit of code on each page you
want watched. Then, each time your page is loaded, a slew
of data will be transmitted via HTTP headers to the third-
party site, which will track and store that information for
you. Later, you can visit the service and see your statistics
(and usually a few ad banners).

The disadvantages to these services are numerous. You’ll
need to fit their “branding button” into your interface.
Their code may slow down your page. You’ll have to trust
the service with potentially sensitive traffic information.
But they are free, and often they are the only alternative if
you don’t have a dedicated server. We’ve already looked at
TheCounter.com’s global statistics. This is how they get this
data, and it also is how you can add the tracking service to
your site. Hitbox.com is another option, with even more
detailed information. A search for “Web counters” on any
search engine will turn up dozens more.

Use Your Numbers
Once you’ve got the data from your Web site, it’s time to
put it to use. But before you do, it’s important to understand
just what that information means. You might be surprised to
find your numbers don’t match the rest of the Web. Earlier
in this chapter, l demonstrated that effect with the
BrowserWatch statistics. Their site is aimed at developers

who make different browser decisions than those of the gen-
eral population. Your site may have a similar audience skew,
and a first look at your statistics may confirm this.

You might also learn something else: Your site’s design
is a filter. It may seem like an obvious fact—that the tech-
nologies you choose will necessarily limit the audience you
attract—but it’s an important lesson to keep in mind. For
example, if you make use of technologies only supported
in later versions of popular browsers (think dynamic posi-
tioning with CSS and JavaScript), and don’t bother creat-
ing an alternative interface for users with browsers that
don’t support these features, your statistics will be skewed
toward the high end. For this reason, it’s important to gen-
erate two different traffic reports with your log analysis
tool: One that shows users per browser, and one that
shows page views per browser. And, the difference may be
dramatic. A site optimized for high-end browsers may get
10 times more traffic with those browsers, even if the
number of users is comparable.

So great, you’ve got your numbers together and can see a
fairly clear picture of who is using your site. Now, you need
to make a big decision: What browser tags and technologies
are you going to use? To make these choices, you’ll need to
know which browsers and versions support which features,
and then map that to the number of users for each that you
have. Then, you can make a clear choice, and begin to for-
mulate a strategy for targeting each group.

We’ll start with tags. As HTML developed, it fractured.
Some browsers supported tags from published W3C specifi-
cations, others developed their own proprietary tags. As the
browsers iterated, they began to adopt new tags at different
rates. Thus, a particular 3.0 client may not support a feature
in a competing 2.0 version. Keeping this all straight is,
frankly, a nightmare.

Thankfully, there’s help. A number of Web sites have
been created to document this fractured development.
One of the best (if you can ignore the awkward inter-
face) is Index Dot HTML, at

ASWD_001121.qxd 11/27/00 11:18 AM Page 154

Chapter Five - Browsers 157The Art & Sc ience of Web Design156

www.blooberry.com/indexdot/. The charts on this site show
each tag and attribute, and how they have been support-
ed over time. There are columns that show when a par-
ticular tag was first published in a W3C specification,
and when it was implemented in the browsers with the
largest user base. The detail is phenomenal. For example,
you can check which browsers support not only frames,
but each attribute available to that tag, such as framebor-
der, bordercolor, marginwidth, and on and on. Truly an
invaluable resource for making design decisions.

Index Dot HTML only deals with tags and attributes,
however. For a broader perspective, try Webmonkey’s
BrowserKit at www.webmonkey.com/browserkit/. This page doc-

uments things like JavaScript, Cascading Stylesheets, and
XML support across the major browsers, and distinguishes
across platforms as well. Formatted in a neat table, you can
simply look down a column and see if there are enough
boxes filled in for your level of support. Again, this is an
easy decision-making process.

Other technologies have whole sites dedicated to them.
Cascading Stylesheets, for example, have great potential
but an unbelievably spotty implementation in current
browsers. To track the massive specification across all ver-
sions of browsers, the WebReview site has created a special
section at style.webreview.com. By now, you’ll notice the
familiar rows and columns of a support table popular with

It’s true that the browser universe has

collapsed into two primary competitors:

Internet Explorer and Netscape. Yet,

things aren’t always so clean cut. For

example, the world’s largest provider of

Internet service, America Online, uses a

special version of Internet Explorer with a

feature set that doesn’t quite match that

of the one released publicly by Microsoft.

Add to that the folks surfing your site

through their televisions. You didn’t think

you’d get off that easily, did you?

Thankfully, these specific browsers

have plenty of documentation to support

them (and you). America Online, for exam-

ple, has compiled a staggering amount of

information for developers, available

online at webmaster.info.aol.com/. Here,

you’ll find extensive charts of which fea-

tures are supported in each version of

the AOL browsers, and just how many in

its audience have upgraded. You can

also find documentation on what AOL

does to compress images, how to work

around the caching scheme they use,

and more. Regardless of whether you

target AOL users, it pays to spend some

time reading through this site.

Worried about how your site works

with the WebTV box? You should be.

While the usage numbers for WebTV

aren’t all that high, they are growing

and could be a significant portion of

your audience someday. Like AOL, there

is plenty of useful information on the

WebTV site at developer.webtv.net/,

including an emulator for their browser.

You can download and install this appli-

cation and run the WebTV client on your

desktop machine. Surfing through your

pages undoubtedly will be an enlighten-

ing experience, considering how many

liberties the browser takes with table

layout and typography.

Alternative Browsers

Excruciatingly detailed information on

the AOL browser features and usage at

the America Online Webmaster Info site.

The WebTV developer site offers tutori-

als for television Web design, plus an

emulator to test your site.

Curious what your site looks like on TV?

Download the WebTV emulator and

have at it. And yes, you can even use

the remote control to experience the full

user experience.

ASWD_001121.qxd 11/27/00 11:19 AM Page 156

Chapter Five - Browsers 159The Art & Sc ience of Web Design158

sites like this. WebReview gets into very specific detail in
their table, matching up not only implemented features of
the specification, but making notes of bugs and weird
behavior in the browsers.

Choose a Strategy
By now, you have a firm understanding of the research
tools available to you. We’ve looked at the historical
trends in browser adoption. We’ve analyzed the industry
trends for browser usage and compared them to a number
specific to our sites. We’ve mapped those numbers to the
technologies we wish to incorporate into our sites. Now,
we need to develop a strategy for creating Web interfaces
that accommodate the audience and technologies we’ve
decided to target.

To develop a methodology for developing our sites, we’re
going to examine three different strategies for dealing with
multiple browsers:

• Don’t ask, don’t tell
• Browser-specific exploitations
• Conditional serving

None of these strategies can exist in a vacuum. As we
dig into each, we’ll look at how they overlap.

Don’t Ask, Don’t Tell
The easiest possible strategy is really no strategy at all.
Rather, you could ignore the problem all together and cre-
ate the simplest possible page that works in all browsers.
Well, you could do that, but where do you draw the line?

One solution is to employ only the simple code the
browsers managed to get right. This includes basic HTML
(probably somewhere in the neighborhood of version 3.2),
with things like tables, frames, font tags, and maybe even a
plug-in or applet. These pages were written by the develop-
ers, authors, and designers who can’t afford the resources
needed to play the cutting-edge tech game. They’ve staked

out a simple plot of Web frontier and are happily coexisting
with technology from three browser versions ago.
Developers in this first group build the majority of today’s
Web sites.

Many of the research tools we talked about earlier in
this chapter can feed the sense of security that comes from
embracing a “don’t ask, don’t tell” strategy. We’re not going
to bother with advanced (and typically buggy) technologies.
We’re not going to worry about the complexity of backend
scripting engines publishing multiple versions of our sites.
Rather, we’ll take the simple route and, by using tools that
show us compatibility like Index Dot HTML, define a very
narrow set of tags and technologies. Sites like these proba-
bly won’t win awards for innovation, but they will satisfy
the needs of the largest group of users. And isn’t that the
point after all?

HTML was designed to “degrade gracefully”—meaning
every version of the HTML specification published by the
W3C was guaranteed not to break previous versions. Thus,
if a browser doesn’t understand a particular new tag, it is
required to just keep going as best it can. That way, you can
use things like the tag to drop images into your pages,
but satisfy anybody by including the "ALT=" attribute with
rich textual descriptions. HTML is filled with fallbacks like
this, and it pays to exploit them not only with the simple
strategy we’re describing here, but even as an ultimate safe-
ty net on more complex multi-browser strategies.

Look at the multiple levels of content support in this
example:

<object src="cat.mov">

</object>

Here, we have an embedded QuickTime movie of my
wonderful cat, Alex. But for users without the ability to dis-
play inline digital video, I’ve included a still shot as a JPEG
image. Older browsers, not understanding the <object> tag,

ASWD_001121.qxd 11/27/00 11:19 AM Page 158

Chapter Five - Browsers 161The Art & Sc ience of Web Design160

will safely ignore it and display the image instead. No
graphics displaying? The alt text degrades even further for
search engines or users of devices that read Web pages to
them. And on and on. Degradability is the best way to
ensure compatibility.

Browser-Specific Exploitations
On the other end of the spectrum are the experimenters.
These are the “early adopters,” the Type-A personalities
who enjoy exploring the cutting-edge of browser capabili-
ties. These developers jump at the chance to play with the
new toys, constantly reinventing what is possible on the
Web, and defining what’s next for the rest of us. The sites
they create typically don’t scale back to encompass the
entire Web audience and are easy to spot. Just look for but-
tons and warnings proclaiming “best when viewed with...”

We don’t need to talk again about the strengths and
weaknesses of a strategy that exploits cutting-edge technol-
ogy. Suffice it to say, though, that making the choice to
abandon users of older browsers is not just an interface call,
it’s a business decision as well.

Conditional Serving
The third group consists of the rest of us, people forced to
deal with the reality of publishing on the Web today.
Whether developing commercially or as hobbyists, we don’t
want to turn away a significant percentage of our audience
simply because they won’t (or can’t) upgrade their browsers
as quickly as we’d like. But still, we love the Web, we love
what’s possible, and we want to move in the direction set by
the experimenters I described above. The solution? Multiple
versions of content for multiple versions of browsers. Using
code running on our servers or written as scripts embedded
in our pages, we sniff out the browser versions and platform
choices of our users and serve handcrafted bits and pieces of
our pages.

After doing this multiple-personality work for years, we
know that it’s nearly impossible to keep up with the myriad

of browser and platform combinations. To make things easi-
er on ourselves, many of us define the high-end and low-
end, and then clump browsers into their respective bins.
Slowly, over time, the collective Web audience upgrades,
and new features trickle down from high to low. For exam-
ple, in the early days of the Web, I was developing versions
of pages for browsers that didn’t support tables. I no longer
do this. As browser adoption shifts in new ways, we’ll con-
tinue to adjust who gets what. Netscape’s Cascading
Stylesheets implementation was so bad in Navigator 4.0
that relegating that browser to the low-end bucket has
saved me an infinite amount of grief. It took a long time for
enough of my audience to shift over to Microsoft’s browser
before I felt comfortable doing that, however. By now, you
should know where to go for research on your particular
audience’s preference for browsers. The same thing will hap-
pen in months and years to come with the technologies
that are emerging today. And you’ll need to continue to
keep track.

Of course, this is bound directly to developer frustration.
While the Web appears to be speeding along at an unbe-
lievable clip, most of us are forced to wait for the features
we crave to be embraced by a wide enough audience. And
every day that ticks by with nonstandard browser hacks and
inconsistent implementations means a decrease in the adop-
tion rate. And more waiting.

So how do we go about doing this multiple-version
switching? There are two ways: the browser or the server.
Let’s look at both.

Client-Side Conditional Serving
Regardless of the path you take to conditional serving, the
process will require some sort of conditional logic. Some bit
of code will have to take a look at the User Agent String,
parse it into the discernable parts, and make a decision as to
which chunk of code or alternate page design the browser
should get. You need to decide whether or not those scripts
will live and run on your server, or will be embedded in

ASWD_001121.qxd 11/27/00 11:19 AM Page 160

Chapter Five - Browsers 163The Art & Sc ience of Web Design162

your page’s source code to be executed by the user’s browser.
There are benefits and drawbacks to both.

Sending JavaScript with your HTML to do the browser
detection and code switching can be very simple. The
example on the following page shows just how easy it is to
use an HTML editor (in this case Macromedia
Dreamweaver) to quickly make the decision as to what
code will be going to what browser. Enter a couple of URLs,
select a few options, click OK, and you’re finished.

Even if you’re more comfortable writing things by hand,
the process is easy. Your code will simply check the brows-

er’s identity, then switch (in the following example) among
multiple stylesheets.

<SCRIPT> <!--

// Windows IE 4 or later...

if ((document.images) &&

(navigator.appName != "Netscape") &&

(navigator.appVersion.indexOf(‘Mac’) == -1))

{

document.writeln("<link rel=\"stylesheet\"

type=\"text/css\" href=\"ie.css\">")

};

// Navigator 4...

if ((navigator.appName == "Netscape") &&

(parseInt(navigator.appVersion) == 4))

{

document.writeln("<link rel=\"stylesheet\"

type=\"text/css\" href=\"nav.css\">")

};

-->

</SCRIPT>

The code merely checks for the appropriate “appName”
and “appVersion,” and then adds a <LINK> tag to the docu-
ment pointing to the correct stylesheet.

Things aren’t quite this foolproof, however. There have
been a number of security issues with browser scripting that
have caused a number of users to disable that browser fea-
ture. With JavaScript crippled, none of the conditionalizing
we’ve just explored will work at all. And your users most
likely won’t see any errors. Instead, they’ll see your pages
without the style information, or with broken features
unsupported in their browsers. Depending on the complexi-
ty of your pages, this could render your pages as attractive as
a Physics paper, or a confusing spew of unintelligible code.

One final drawback to the simplicity of client-side code:
performance. If you’re providing two versions of your pages,

Using an HTML editor such as

Macromedia’s Dreamweaver can make

even complicated tasks a matter of

point and click. To include a rudimenta-

ry browser negotiation script in your

pages, for example, takes only a couple

of simple steps. First, select the “Check

Browser” option from the pulldown

menu on the Behaviors pallet. Then,

simply use the resulting dialog box to

choose which browser should get which

version of your interface.

In this example, I’ve created a high-

end page designed for Internet Explorer

4.0 and higher, and a low-end version

for every other browser. To accomplish

this, I simply enter the alternate URL for

the low-end page, and tell the script

which browsers should be redirected

there. Other HTML editors like Adobe’s

GoLive have similar functionality. Adding a conditional browser script to

your site can be as easy as selecting a

Behavior in Dreamweaver.

Checking Browsers with Dreamweaver

ASWD_001121.qxd 11/27/00 11:19 AM Page 162

Chapter Five - Browsers 165The Art & Sc ience of Web Design164

with the switch happening in JavaScript, some of your users
most likely will end up downloading both pages, but only
displaying the one intended for them. Users of low-end
browsers, for example, would come to your page, download
the code, execute the code, then get redirected to the page
designed for them. Thus, not only do they download more
bytes, but they also have to take the time to bounce over to
the right page. Not the best user experience.

The better solution is most likely found on your server.

Server-Side Conditional Serving
Rather than risk broken pages and slower user experiences,
we should look to server technology for answers. The ideal
situation would have the server detecting what browser a
user has, and then sending just the correct code for that
configuration. This way, regardless of what the user’s securi-
ty settings are, you can be assured that they’re seeing the
interface you intended.

There are a wide variety of server-based scripting sys-
tems. You may have heard of Microsoft’s Active Server
Pages, or Allaire’s Cold Fusion, or even PHP or Embedded
Perl. These are all methods of executing code on your serv-
er whenever a user asks for a page. We won’t get into the
details of that now; we’ll talk more about dynamic publish-
ing in Chapter Eight, “Object-Oriented Publishing.”

Conceptually, what you’ll be doing on the server is near-
ly identical to what you would have done on in the browser.
In most cases, a few lines of code will access the User Agent
String and parse it (in some languages this is done automat-
ically—you just ask for the result). Then, you can make
your interface decisions by writing conditional logic that
switches between different chunks of your code.

Beyond the assurance that the scripts will run, you can
also get much more sophisticated in how you serve different
pieces of HTML. Here are a few different architectures for
server-based browser detection:

• Many versions of the page: You can create a tiny
script that redirects users from the URL they fol-
lowed to the appropriate version of the page for
them. Very simple code, but now you’ll have multi-
ple versions of your content.

• One version, many switches: This is a very popular
way to make your pages work in many browsers. Just
write one version of the page, then add little
IF…THEN statements for each piece that’s broken
in a particular browser.

• “Forking”: A more complicated version of the
example above. Think of each part of your page as a
separate chunk. Each chunk of the page gets
wrapped in browser-specific code, gets assembled
into one big page, and then sent to the browser.
This separates the content from the presentation
and makes both more manageable, but it takes a lot
of planning up front.

A brighter future?
If this seems like an awful lot of work, you’re right. It is.

Developers and designers are spending countless hours
reworking their pages or, worse, giving up entirely and push-
ing out lowest-common-denominator code, stifling innova-
tion that could benefit the user experience on their sites.
Can’t something be done? The Internet was running on
standards for a couple of decades before the Web. Isn’t any-
body doing anything about this?

Yes. The World Wide Web Consortium.
But first, a bit more history. There’s been a longstand-

ing (and SGML-based) utopian ideal of completely sepa-
rating the presentation of electronic content from its
semantic meaning. I’ve preached the importance of that in
these pages, and it remains the foundation of many Web
technologies.

What does this have to do with the standards problem?
In a nutshell, Web developers and designers expect their
content to behave in a consistent way. The Hypertext

ASWD_001121.qxd 11/27/00 11:19 AM Page 164

Chapter Five - Browsers 167The Art & Sc ience of Web Design166

Markup Language, however, was never designed to be dis-
played in a standard way—a very important premise to
remember. From the beginning, HTML was created to react
and adapt to whatever computer, display, or device that was
reading it, which means an <H1> element on my computer
could look completely different from an <H1> element on
your PalmPilot.

Well, that was the ideal. The reality was that nearly
everyone surfing the Web has similar computer systems run-
ning comparable browsers. The result? A de facto standard
for the visual display of HTML. When we mark our text
with tags, we expect those tags to look the same every-
where—even though that rubs against the very grain of
HTML. When I lay out a page of text, there had better be
the same amount of space between my paragraphs on both
browsers. If not, one seems broken. Who wants that?

The bigger problem, of course, is that this informal ren-
dering standard doesn’t scale. More tags kept getting added
to HTML, and with them an implied rendering. At this
point, it’s just too difficult to keep up with all the little
quirks. <p> tags render differently when inside tags.
There’s more space in table cells if the </TD> is on a differ-
ent line than the content. What a headache.

The Browser Solution
But even if the W3C were to develop a perfect standard for
presentation-free HTML and a robust style language, the
browser companies would still have to implement it. And
that’s been a problem from day one, if today’s buggy and
incomplete browsers are any indication.

Netscape and Microsoft (and everyone competing with
them) have some work to do. Most importantly, they have
to shift from being end-user software companies and morph
into producers of consumer goods.

In his latest book The Invisible Computer, Donald
Norman digs into some of the fundamental problems with
the computer industry. He starts with an interesting ques-
tion: How many of you have bought a watch recently

because it tells better time than the rest? Nobody has, of
course. All watches keep time accurately within a second or
two a day. Rather, you choose a timepiece based on other
factors: style, alarm features, time zone translations, and so
on. The Web’s inventor said it best:

“Anyone who slaps a ‘this page is best viewed with
Browser X’ label on a Web page appears to be yearning
for the bad old days, before the Web, when you had very
little chance of reading a document written on another
computer, another word processor, or another network.”
–Tim Berners-Lee in Technology Review, July 1996.

This same sort of default assumption needs to apply to
our browsers. We need to get to the point where the display
of Web content is taken for granted, with all browsers sup-
porting all tags, style, and scripting at the same level. Just
like your watch keeps time, your telephone can call other
phones, and your stereo accepts all compact discs. There
needs to be no such thing as “best viewed with....” Instead,
browser companies must distinguish their products with
other features: Speed, user interface, desktop integration, or
any of the other decision points that consumers use before
making a purchase.

Until then, we’ll continue to struggle with an incom-
patible Web.

ASWD_001121.qxd 11/27/00 11:19 AM Page 166

Chapter Six

Speed

The Web is an amazing expression of
hypermedia, personal storytelling, and the
interconnectedness of everyone on the planet. It’s
also an incredibly difficult place to make a living.

How fast is your Web site? Do pages load in 5 seconds? Ten? Do you even know?

It doesn’t matter how cool and exciting that animated logo is, no matter how

important it is to get that picture of the CEO on the front page, you’ll lose more

traffic to the principle of speed than any other. In this chapter, we’ll look at ways

to make our sites as fast as they possibly can be. We’ll start by looking at just how

fast your pages need to be, using techniques such as the Stopwatch Analysis, to

peeking behind the scenes of your competition to see where they stand. Then,

it’s time to get your site into shape by scrubbing every last byte from your code,

and—borrowing from the magician’s practice of sleight of hand—dealing with

the perception of speed versus the reality of slow-loading pages.

[6]

ASWD_001121.qxd 11/27/00 11:19 AM Page 168

Chapter Six - Speed 171The Art & Sc ience of Web Design170

If there’s one thing you can count on in the Web industry,
it’s the fictional future. Ask any developer or designer
what’s coming next, and you’re bound to hear, “Well, as
soon as we have faster bandwidth…”

We’ve heard over and over again—from users, from pun-
dits, and from the scientists in our usability labs—the number
one plague facing today’s Web is speed. Users are frustrated,
especially those new to the surfing experience who have
absolutely no patience for cell after cell of our tables pouring
painfully into their browsers. If only the Web were faster.

Broadband is promised in press release after press release.
So-and-so has just done a US$20 billion deal to provide
high-speed access to four homes in suburban Atlanta. Cable
modems are being rolled out as we speak. Bandwidth!
Bandwidth! Bandwidth!

Fact is, we’ve been saying the same thing over and over
again for the 5 years there has been a commercial Web. And,
we’ll probably keep saying this for at least 5 more years.

Connecting with the Past
We’ve already discussed Moore’s law, in which computer
technology gets twice as fast and half as expensive in this
industry every 18 months. And while that certainly has
held true for hardware, the same can’t be said for connec-
tion speeds. In fact, the Web got a lot slower before it start-
ed speeding up. Way back in 1994, the audience coming to
HotWired.com was split into three groups: a third on
14.4kbps modems, a third in the 56kbps line/ISDN group,
and another third coming to us on big industrial T1s.
Naturally, we assumed that users would consistently migrate
to faster and faster connections as more companies upgrad-
ed their infrastructure, users ditched their modems, and
broadband became ubiquitous in homes around the world.
After all, if our computers were shooting from 100 mega-
hertz to 1 gigahertz in just a few years, think what connec-
tion speed would do.

But that’s not what happened. While many did, in fact,
upgrade to faster modems and dedicated connections, an

unexpected thing happened: the Internet got very, very pop-
ular. And this popularity didn’t strike equally across our user
base. Rather, millions and millions of people came online at
once, and all with low-end modems. When America Online,
for example, upgraded their service to include a gateway to
the Internet in 1995, they opened a floodgate of users who
had no other option than 14.4kbps modem connections.
Suddenly, the numbers shifted. Now, the vast majority of
users came to our sites with much slower connections. Our
experimentation into digital video over the Web suddenly
became far less interesting. In fact, almost all of our atten-
tion shifted to creating new Web interfaces that were as
small and as fast as they possibly could be.

The last couple of years have been better, sure, but in an
evolutionary sense. Modem users have more than doubled
their speeds on average, from 14.4kbps to 33.6kbps. But that
is it for modems. The technology has run its course. The cur-
rent maximum speed of 56kbps is quite literally the limit; they
simply cannot be made to go faster. And 56kbps isn’t quite
the reality at that. Due to FCC regulations, these modems can
only really achieve a maximum speed of 53kbps, and most
homes have fairly bad wiring, forcing the upper limit at a pal-
try 40kbps. And broadband? Home usage as of this writing is
only about 6 percent in North America. We certainly haven’t
had any paradigm-shattering leaps en mass to cable modems,
DSL, or any other fat-pipe solution to the home.

Want to know a dirty little secret? I’ve been surfing for
the past few years on a T3 digital leased line from my
offices. That’s about as much bandwidth as anybody could
possibly need. Pages load as if from my hard drive. Software
updates zip down seemingly instantly. MP3 files stream in
real-time. And you know what? I never want the Web sites
I visit to get any slower. Ever.

Think about using applications on your computer. If you
have a reasonably fast desktop machine, most functions
happen in less than a second. Click “Print” and a dialog
box comes up before you notice. Drag a file from one place
to another and the icons on the screen respond in real time.

ASWD_001121.qxd 11/27/00 11:19 AM Page 170

Chapter Six - Speed 173The Art & Sc ience of Web Design

We take this type of interaction for granted. That’s how
computers are supposed to work—they respond to our com-
mands. If they don’t, something feels wrong. Did I crash?
Do I need more memory? Why isn’t anything happening?

The Web is a completely different experience, however.
Sites—even those offering Web-based applications—creep
along like an ancient mainframe. But what if using a search

engine or reserving airline tickets felt more like using a
computer program and less like slogging through a muddy
network. The pages on those sites should pop up the instant
I click, just like dialog boxes do on my PC.

You know what that means? That means it will be
years—many years—before we have both the bandwidth and
infrastructure to do any sort of “broadband” design on the
Web. For the near future, we’ll be optimizing our Web sites,
squeezing every last byte from our pages, and doing whatever
we can to make our sites load as quickly as possible.

Thank goodness, I say.

The Beauty of Being Slow
If you’ve done any amount of design or development on the
Web, you’re probably thinking I’ve lost my mind. Slow
modems are a good thing? Lagging performance is a benefit
to the Web?

Of course it is. Constraint propagates creativity. We’re
all forced to struggle with the issue of performance on our
Web sites, but it is that struggle that breeds perspective on
the Web as a medium. I’ve seen designers face this over-
whelming roadblock over and over again—with the same
result: They do better work. Without a doubt, constraint
breeds creativity. I’ve been amazed at what can be done
with two typefaces and colored table cells. You can do great
work which virtually no bytes at all.

Where to start? Look to your competition for guidance.
You know who your audiences is, and you know what other
Web sites are vying for their attention as well. Do some
analysis. See where the bar is. It’s easy.

You can use a site like Web Site Garage (www.website-
garage.com) to get a this information. It, and others like it,
provide powerful tools for analyzing your site, including
reports on how your site appears in search engines, how
fresh the links are, and the total file size and download
time of your pages. With a tool like this, you can track just
how fast or slow your pages are. But it works just as well to
point these sites at your competition. Find a few sites you

172

There has been no shortage of hype and

excitement over the possibility of redefin-

ing retail shopping through e-commerce.

The reality, however, has been a strange

mix of corporate efficiency and user dis-

satisfaction. Why? It is true that many

e-commerce sites have been created by

relatively new companies. Order tracking

and fulfillment is difficult to get right.

Customer support people are hard to find

and train. Warehouse management is an

acquired skill. And all of those attributes

show up in surveys of Web users who

have shopped online. But as the chart

below shows, the top grievance of the

majority of shoppers can be traced

directly back to page design. If a site is

slow, shoppers give up.

Express Checkout—E-commerce Style

This data, from a May 2000 report published by biztalk.com, measures customer

satisfaction with online shopping during the previous year’s holiday season. Forty

percent of all shoppers were frustrated by long downloads while trying to complete

their purchases. In a very plain sense, bandwidth equals money.

40%

TOP CUSTOMER COMPLAINTS

Slow Web site

Out of stock notification

Late delivery

Can’t track order

31%

30%

25%

ASWD_001121.qxd 11/27/00 11:19 AM Page 172

Chapter Six - Speed 175

consider competitors, dump their URLs in one of these
utilities, and see how they stack up. For example, if I were
responsible for building a music site, I might collect the
URLs of my competition, run them through the tests, and
create a chart like this:

This chart can serve as a target for my new interface.
Clearly, if I want to compete on a performance basis with
these sites, I’ll need to build a home page that weighs in at
somewhere around 95K—an average of the numbers above.
With this exercise, I’ve set my goals for my home page. I
should do similar studies for other key pages. How does my
typical page of content match up? How about my search
results page? Different functional pages will have different
size specifications.

But this is only a guide. I now need to adopt a strategy
based on performance. I need to find a way to scrape every
byte out of my pages, and make them as fast as I possibly can.

Lighter sites are not just faster for the user, they’re easier
on the infrastructure, the support team, and the wallet.

Cutting the Fat with CSS
We’ve talked about the power of Cascading Stylesheets
elsewhere in this book, but I’m going to bring that technol-
ogy into this discussion as well.

174

Creating fast Web pages is a lesson in

constraint. Stuffing all the features,

brand identity, and other requirements

into an interface that loads quickly can

be a frustrating experience at best.

Imagine, then, the nightmare of try-

ing to fit an entire Web site into an

unbelievable 5k. That was the goal of

an innovative design contest held in the

spring of 1999, the brainchild of Stewart

Butterfield. The rules were simple: “All

HTML, script, image, style, and any

other associated files must collectively

total less than 5 kilobytes in size and

be entirely self-contained.” The entries,

and in particular the winners, were

remarkable. From e-commerce function-

ality to stunning visual design and even

playable video games, the contest

proved that constraint breads creativity,

and that bandwidth can be a crutch.

Here are some of the winning entries.

The 5-Kilobyte Interface

The overall winner not only built an

e-commerce interface in under 5k, but

included a workable JavaScript shop-

ping cart with a running total. Form

and function blended with a great

sense of humor.

ASCII art to the max, this entry used

Dynamic HTML animation to create a

beautifully illustrated poem..

Caching images goes a long way when

playing with blocks.

Remember the Atari 2600 home video

game system? This entry evoked memo-

ries of early 1980s state of the art games

with fully functional arcade action.

COMPETITOR SIZE SPEED
(bytes) (seconds)

www.mp3.com 44,997 11.86

www.allmusic.com 80,380 23.14

music.yahoo.com 87,495 22.50

www.scour.com 165,361 46.41

www.wallofsound.com 97,261 26.62

ASWD_001121.qxd 11/27/00 11:19 AM Page 174

Chapter Six - Speed 177The Art & Sc ience of Web Design176

The flexibility of Web technologies is certainly one of
the reasons for their success. If you’ve done any amount of
developing with these technologies, you’ll soon realize that
there seldom is one solution to any problem. Rather, there
are typically any number of ways to accomplish something
on a Web page, with any equal number of reasons to choose
one over another. We can use this elasticity of Web tech-
nologies to our advantage when it comes to making our
pages faster.

Let’s look at a simple interface component from the
music site I was talking about earlier. Here, you can see a
list of musical genres, designed as a bulleted list with a sub-
ject header. The effect is a clean solution to the site’s navi-
gational needs.

Take a close look at the title bar of that box. Notice the
thin border along the top? It’s an elegant ornamental addi-
tion to the interface that helps define the box and give it a
certain amount of visual weight. But look at the code it
takes to design this title bar using just HTML:

<TABLE width="100%" cellpadding=0 cellspacing=0 border=0>

<tr bgcolor="#666666">

<td>

</td>

</tr>

</TABLE>

<TABLE width="100%" cellpadding=2 cellspacing=0 border=0>

<tr bgcolor="#CCCCCC">

<td>

Browse By Genre

</td>

</tr>

</TABLE>

Looking through each line of markup, you can see how
all of it is necessary. The first table draws the thin border.
The table is set to extend the full width of its container,
which in this case is the overall table that lays out the page.
The cellpadding, cellspacing and border are all turned off to
make the table as small as possible. A table row starts next,

For large Web sites with lots of traffic,

fast Web pages can mean more than

just an effective user experience—it

also translates directly into a signifi-

cant expense. A 100k home page may

not sound like all that much band-

width to a company with huge digital

lines, but when that page is accessed

a million times a day (which isn’t

uncommon on the bigger portals and

e-commerce destinations), it quickly

adds up. Look at the math. One mil-

lion multiplied by 100k means that just

for the home page, you’d need to

move 1,000 gigabytes of data. Cut 20

percent of the fat off the home page

and you’ll save the equivalent of a full

T1 of bandwidth per day. An opera-

tions executive at one of the Web’s

larger sites once told me that each

byte they included on their pages cost

them 16 cents a year. Think about

that the next time you add so much as

a linebreak to your code.

And it’s not just the fact that heavily

used fat pipes are really expensive, but

so are server farms, systems administra-

tors, and network engineers. And you’ll

need more and more of them if you’re

running a heavy site with heavy traffic.

The Economies of Speed

A simple navigation element from a music site. Easy code

changes can dramatically reduce the amount of code it takes

to generate something as simple as this box.

ASWD_001121.qxd 11/27/00 11:19 AM Page 176

Chapter Six - Speed 179The Art & Sc ience of Web Design178

and sets the background to dark gray. Then, a table cell is
filled with a single-pixel, transparent GIF image, because
some browsers will collapse empty cells. I’d rather use a sim-
ple space, but the font size, even at the smallest size, will
create too much vertical space.

Next, a second table creates the actual title area. This
time, the table is given 2 pixels of padding so the text con-
tained within the cell doesn’t bump right up against its edges.
The row then gets a lighter shade of gray, and the cell is filled
with the appropriate title words, and wrapped in a font tag
that takes care of the rudimentary typography. Finally, all the
tags are closed and the title bar is finally done.

Now, compare all of this to a version designed using CSS:

<H3 class="title-bar">Browse by Genre</H3>

Alright, I’ll admit to cheating on this one. The HTML is
incomplete without the following CSS, located elsewhere:

.title-bar {

font: bold .8em Arial, sans-serif;

border-top: solid 1px #666666;

background: #CCCCCC;

padding: 2px; }

In this example, I’ve simply used a structural page ele-
ment, in this case a heading, and given it a specific class of
“title-bar,” Then, in my stylesheet, I define exactly how I’d
like it to appear. Let’s take it apart.

The first line of this CSS declaration does my typogra-
phy, like the font tag in the first example. Next, I ask the
browser to simply draw a border along the top of the ele-
ment, effectively throwing away the whole table plus the
invisible image from before. Then, I set the background and
add the padding. Done. And, it looks identical to the bloat-
ed HTML version.

But the benefits don’t stop there. I can take the CSS for
my title-bar class and put it in a separate document, then
point from my HTML page to my external stylesheet like this:

<link rel="stylesheet" type="text/css" href="music.css">

Why would I want a whole separate document for my style?
Well, primarily because I can now point to it from all of my
other Web pages. And since the stylesheet never changes,
the browser will just use the one from its cache. So once my
users load one page on my site and get the CSS file, they
can reuse it over and over again as they visit other pages,
without incurring any additional downloads or using any
more bandwidth. I get style for free!

Compared to the countless font tags and tables being
downloaded over and over again in my old HTML version,
this one is much faster and more efficient. But it doesn’t
end there. Every piece of code can be rewritten using ele-
gant bits of style rather than blunt old presentation tags.
Take, for example, the bullets in the navigation box we’ve
been studying. See how they are a specific shape and shade
of gray? Using HTML, this would be a luxury I’d probably
do without, considering the code I’d need to do this:

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

<img src="images/bullet.gif" height=12

width=12 alt="bullet">

</td>

<td>

Rock

</td>

</tr>

</table>

ASWD_001121.qxd 11/27/00 11:19 AM Page 178

Chapter Six - Speed 181The Art & Sc ience of Web Design180

Again, a verbose table sets the stage for the effect I’m
after. Instead of simply using the bulleted list available in
standard HTML with the tag, I opt for more control. I
want control over the specifics of the bullet, and HTML
won’t give it to me. So to get past that limitation, I use an
image of the bullet I want. Nice and round and gray to
match my interface. I need to put this image into a separate
table cell since I want to control the wrapping of any list
items that may get too long. By placing both bullet and text
in separate cells, I can avoid wraps that look like this:

• A list item some times can
get too long and wrap

See how the text on the second line wraps under the bullet?
That looks sloppy and is hard to read. Rather, I use the two
cells to achieve a cleaner look:

• A list item some times can
get too long and wrap

So much work for such a simple effect. And consider
that the code above is only for the first element in a list of
over a dozen genres, and we start talking about a lot of stuff
to download. Switching back to CSS, we throw almost all
of the markup away and are left with stripped down and
easy to read HTML:

Rock

And the following entry in the stylesheet:

UL {

font: .8em Arial, san-serif;

list-style-image: url(images/bullet.gif); }

Now I can use the standard tag from HTML to gen-
erate the list, since I will get all the control I need. I still
want to use my bullet image, but now I just specify it as the
list-style-image in my CSS. This tells the browser to use a
regular bulleted list (formatted with my typographic specifi-
cations, of course), but throw out the standard bullets and
use my image in their place. I could use anything for a bul-
let now, and it wouldn’t cost me any additional code.

As browsers get more powerful, designers will be able to
do more with less. Early in the Web’s history, designers
eager for visual control of their pages used images to
achieve these effects. In essence, they used bandwidth when
under-powered browsers let them down. No font control?
No problem! Just send your users an image of your headline.
But we want to save bandwidth, not spend it on server con-
nections to move pictures of words around. CSS lets design-
ers send simple text with brief commands that accomplish
the visual design goals while being incredibly fast.

And our pages can get even faster. There is a certain
amount of magic involved here. Small pages can feel slow,
while even the fattest pages can hold a user’s attention,
especially if you trick them into staying around.

The Illusion of Speed
There’s a reason superstar magician David Copperfield fills
his stage with scantily-clad women. It’s not for the pure
entertainment value, although I’m certain that’s got a bit to
do with it. And it’s obviously not because they’re attracted
to the aging, bare-chested master of illusion. No, the answer
is much simpler than that. These young sequin-clad women
are there for one reason—so David can trick you into look-
ing at them rather than noticing the rather mundane
mechanics of performing sleight of hand.

It’s one of the oldest tricks in the proverbial book: from
street corner Three-Card Monte to the bump-and-pick
techniques that relieve you of your wallet in the subway.
Distraction leads to illusion. So why not use it to solve one
of the most important problems facing Web designers today.

ASWD_001121.qxd 11/27/00 11:19 AM Page 180

Chapter Six - Speed 183The Art & Sc ience of Web Design182

David knows that the majority of his audience will be
distracted by the sparkly women while he busily makes an
elephant disappear from the stage. While you may not be
able to stomach the blatant sexism of Las Vegas shows, you
can still exploit the effect on your pages—with a little work.

The goal is to get the most important part of the page
on the screen as quickly as possibly, instantly giving your
users something to look at while you go on to load the rest
of the page.

HTML has historically been a very linear language. You
started writing your page at the top, and continued to add
words, images, and code until you reached the bottom of
your page. Browsers reacted much the same way, displaying
the content on the screen as quickly as the server sent it
down the wire. We’ve been bound to what’s been called the
flow model. Pages can only be formatted along with the flow
of the source code behind it.

In the very early days of HTML this meant that Web
pages could have no columns or really any horizontal
relationships between interface elements. Since the
browser was simply reading code and displaying it on
screen, pages were, by default, long lists of things—be
them navigation links, paragraphs, or images. There was
no way to arrange elements into a basic page layout.
With the advent of tables in HTML, designers were at
least able to add a basic sort of layout of these pages with
an admittedly primitive system of rows and columns. If
you were clever enough to figure out the intricate rows-
pans, colspans, padding and spacing, you could achieve
almost any layout.

Many of these table-based page designs are reminiscent
of the Three-Panel Layout we discussed in Chapter Two,
“Interface Consistency.” But looking at that approach in
the context of performance, there are some basic problems
we need to solve. How many times have you visited a Web
site only to be presented with a blank screen? You may
notice that the browser’s status bar is telling you that it is
still working on getting the page. You sit and wait as the

seconds tick by until suddenly, in an instant, the entire
interface blinks onto the screen at once. Ever wonder why
that happens?

Turns out that tables are a fairly difficult problem for
browsers. There is a lot of math that needs to happen
when you download a page. A table’s cells are all sized
based on their contents, as well as the contents of other
cells around them. To do this work, a browser needs to
know everything about the table before it can start to
draw it on the screen. So it gets all the <TR> and <TD>
tags, as well as all the stuff inside those tags, and then
tries to figure out the most appropriate size for every-
thing. When it finally finishes all of those calculations, it
shows you the table.

The Three-Panel Layout, however, is typically structured
as one large table. There will be a row across the top span-
ning the columns below, continuing brand identity and
advertising. A second cell will run down the length of the
page for navigation. Finally, a large cell on the right will
house the page’s content. The code would look something
like this:

<table>

<tr>

<td colspan=2>

<!-- Branding and Advertising in this cell -->

</td>

</tr>

<tr>

<td>

<!-- Navigation in this cell -->

</td>

<td>

<!-- This is the big content cell -->

</td>

</tr>

</table>

ASWD_001121.qxd 11/27/00 11:19 AM Page 182

Chapter Six - Speed 185The Art & Sc ience of Web Design184

And the contents would show up in a browser window
looking like a simple, standard Web page.

To create the specific layout effects, designers will
often create pages that also include nested tables—mean-

ing they contain additional tables
within the overall structure. Nested
tables slow the browser down even
more, forcing the software to figure
out each of the inner layouts before
it can draw the overall page. Think
about it—not only does the browser
have to figure out what is in each
cell in a table, now it has to figure
out a whole separate table before it
can get back to the one on which it
was working. Of course, this doesn’t
mean you shouldn’t nest tables within
each other when trying to lay out
your pages. But consider rethinking
the design approach you’re taking if
you start approaching three levels

deep—a table within the cell of a table, which itself is
within a table. That’s a lot of work for a browser to do,
and your users will notice the delay in rendering speed, if
not download time.

Thankfully, a simple addition to the <TABLE> element
way back in Netscape 2.0 provides a simple solution to this
problem. Much like images, you can align tables to the left
or right. This allows separate tables to be positioned next
to each other. So the Three-Panel Layout can throw away
the surrounding table and create three separate tables for
the top, left and right. Then, by aligning the navigation
table to the left, the content table will nestle up next to it
and create a page layout identical to the first version.
Identical, that is, except for the fact that each table gets
drawn on the screen progressively. This new code would
now look like this:

<table>

<tr>

<td>

<!-- Branding and Advertising in this cell -->

</td>

</tr>

</table>

<table align=left>

<tr>

<td><!-- Navigation in this cell --></td>

</tr>

</table>

<table align=right>

<tr>

<td><!-- This is the big content cell --></td>

</tr>

</table>

With this simple reworking of the code, the user experience
has been dramatically changed. The resulting code is now a
bit larger, and would actually take longer to download. But
rather than waiting for the whole page to pop up at once,
users get to see something on their screens almost instantly.
They hit the page, and the branding
and advertising table at the top is there
waiting for them as the navigation
starts to load. Then, as the navigation
displays, the page content starts to
load. It’s sleight of hand. “Here, look at
this while I do the rest of my trick…”

By paying special attention to the
progressive rendering of content, we
can create a sort of distraction for our
users as they wait for their slow connec-
tions to suck content down to their
computers. But the example above is
still not ideal. Users of a site, after all,
are primarily interested in the content

When a Three-Panel Layout is built with

just one surrounding table, all of the

code must be downloaded and

processed before the page renders.

Now, the page appears exactly the same

to users, but the experience of progres-

sive loading is much more engaging.

ASWD_001121.qxd 11/27/00 11:19 AM Page 184

Chapter Six - Speed 187The Art & Sc ience of Web Design186

of that site—whether that content is news stories, search
results, items to buy, or whatever. They clicked a link expect-
ing to be rewarded with either something that would satisfy
their goal, or at least get them a bit closer. Yet the example
above actually seems to be working in reverse. Content is the
goal, but it is the last thing to show up on the page. Sure, my
audience now has something to look at while the rest of the
page loads, but wouldn’t it be great if they could look at what
they wanted during those first few moments?

We found ourselves in a similar situation when design-
ing the Hotbot search engine’s results page. A results page
has a lot of jobs to do. Not only must it provide timely and
accurate results to the user’s query, but it must also offer a
way of iterating the search, as well as provide relevant
advertising to help offset the cost of providing a free serv-

ice. Yet, the ultimate goal is to reward
the user as quickly as possible. How,
we asked, could we get the results on
the screen as quickly as possible, while
still maintaining the features and
strong product identity our users
expected from us?

The answer was surprisingly simple.
We solved the problem using a simple
yet powerful feature of Cascading
Stylesheets—namely the technology’s
ability to position elements on the
page. Positioning was added as part of
the second version of the CSS specifi-
cation, and provides a way to do page
layout much in the way desktop pub-
lishing programs like QuarkXPress and

Adobe Page Maker do: by allowing you to draw a box on a
document exactly where you want an item to be, then pour-
ing content into it. The code bellow illustrates just how
simple it is to tell the browser exactly where you’d like a
paragraph to be placed:

<p style="position: absolute;

top: 100px; left: 100px; width: 100px; height: 100px;

border: solid 1px red;">A positioned element</p>

Since we can position elements exactly where we want
them, we can eliminate the aligned tables from the previous
example and simply specify where each element should go.
So, in our code, we simply positioned the brand and search
interface at the top of the page, the advertising down the

A paragraph can be placed and sized

accurately using the positioning fea-

tures of Cascading Stylesheets.

When we designed the results page for the Hotbot search

engine, we used CSS positioning to alter the load order of

the interface parts.

ASWD_001121.qxd 11/27/00 11:19 AM Page 186

Chapter Six - Speed 189The Art & Sc ience of Web Design188

righthand column, and the search results in the center area.
Here’s the really interesting part: we put the positioned
results as the first thing in the page’s source code. Now the user
experience is exactly what we were after. The page would
shoot down to the user’s browser and instantly display the
search results in the right location on the page; then, the
branding and interface would appear above them. And
finally, after the meat of the page was displayed on the
screen, the advertising would appear to the right.

You can do the same with your pages. Think of each
element of the page as a discrete chunk of code. Take each
chunk and wrap it with some CSS that positions it exactly
on the page. Now, rearrange each chunk in the source so
that it loads in the order that makes the most sense to your
user. The browser is still displaying code in the order it
loads, but the loading order has be changed because you
can position the elements. The user experience is perfect—

the content loads first, and the shell begins to pop in
around it. The elephant appears out of nowhere while the
dancing girls dance.

There are drawbacks to this solution, of course. First off,
this technique makes use of a technology only introduced
in the version 4.0 browsers. That means that your pages will
be a jumbled mess when viewed in older browsers. The only
real solution to this problem is to use a browser detection
strategy and build multiple versions—something I’ve dis-
cussed in detail in Chapter Five, “Browsers.” Still, for all
the complaining we’ve been doing about the browsers’ CSS
implementation, the positioning that I’m advocating here
works nearly perfectly in all major 4.0 browser releases.

Another stumbling block may be the actual layout of
your pages. Sometimes, to get the effect we need from a
Web-based layout, we resort to such intricate HTML
hacks that tearing apart our pages just to glue them back
together with CSS just isn’t a reality. For situations where
it does work through, we can start to be creative in our
design an give the illusion, at least, that the Web is a lot
faster than it actually is.

Only after a rigorous study of how your users perceive
your site can you be certain it is fast enough.

Designing for Slow
When bandwidth isn’t an issue, when interfaces have no
constraint, developers and designers lose track of the power
of simplicity. Look back at the world of CD-ROM design a
few years ago to see what I mean. Every user experience was
different, every cursor was animated, it was a sea of full-
screen color blends, drop shadows, and cyber-looking
beveled edges—a mess.

Rather, embrace the constraint of slow connections. Fear
big bandwidth. Learn to love the modem.

Part of the problem with fixing slow

Web sites is first figuring out how to

measure just how fast they are. Total

file size is a good start. If you can get

your pages within a physical range of

kilobytes, you’ll be on the way to a

faster interface. But kilobytes shouldn’t

be the only measure of performance.

Especially considering the perception

issues I’ve discussed in this chapter.

The ultimate goal of any perform-

ance strategy is to keep the users of a

site engaged throughout their visit. For

that reason, time may be a better metric

than size. And by time, I don’t just

mean the math of modem speed divid-

ed by total kilobytes—that will be a

theoretical number at best. Rather, a

more appropriate indicator would be the

total number of seconds between a click

on a link to the user’s perception of

seeing information on the page. And the

only way to get to that data is with a

stop watch and a modem connection.

Even better, consider mapping out a

few user tasks. Pick things appropriate

to your site, like “completing the regis-

tration process” or “finding a song by

your favorite artist to download.” Then,

measure in seconds the entire session,

from typing in the URL to finishing the

task. Do this with several users and find

an average. Then try to make it faster.

Speed Metrics

ASWD_001121.qxd 11/27/00 11:19 AM Page 188

Chapter Seven

Advertising

When bandwidth isn’t an issue, when interfaces
have no constraint, developers and designers
loose track of the power of simplicity.

With ad rates dropping at an alarming pace, and banner clickthrough falling

even faster, both advertisers and site designers are trying everything they possibly

can to get the hapless user away from his task at hand and into a commercial

message. From stretching stories across multiple pages to increase pageviews to ad

banners that mimic dialog boxes desperate for clicks, there is a harsh tension

between usability and revenue. Does it have to be this way? The Web differs

from other media in many ways, but its ability to collect detailed user informa-

tion and target that data is one way in which we can align the goals of both user

and advertiser. This chapter will look at these strategies for making advertising

actually compliment a user interface, and we’ll explore the practice of building

User Profiles—a technique that can apply not only to advertising effectiveness,

but to building meaningful sites from a strong publishing strategy as well.

[7]

ASWD_001121.qxd 11/27/00 11:19 AM Page 190

Chapter Seven - Adver t is ing 193The Art & Sc ience of Web Design192

“You, sir, are an idiot.”
Always a nice way to start the day; but I’m used to it

now. Those e-mails generally continue with something like,
“For someone who claims to know a little about the Web,
you certainly don’t use that knowledge on your dreadful
sites. What were you thinking?”

I can understand the frustration. These flames always
come from the same sort of person—logical, degreed, tech-
nologically savvy. They literally cannot understand why
we’ve chosen to make our Web pages less usable just for the
sake of a crummy ad banner. “What were you thinking?”

The Web is amazing. It’s a wonderful expression of hyper-
media, personal storytelling, and the interconnectedness of
everyone on the planet. It’s also an incredibly difficult place
to make a living. With razor-sharp margins on e-commerce
goods, plummeting ad banner performance, and an increas-
ingly jaded and impatient audience, it’s a wonder anyone
can make ends meet with a Web business model.

Doing business on the Web—the ability to turn traffic
into money—is affecting the very nature of how we design
Web pages. And for better or worse, it’s happening all
around us.

Eyeballs = Money
The model has been a pretty simple one. For the few
years that the Web has attempted to support a significant
audience, people have been trying to fund it (and them-
selves) through a simple audience-publisher agreement
that goes something like this: We’ll give you our goods
and services at no cost whatsoever, you look at banner ads
and click on the interesting ones. The publishers pass
production costs on to advertisers while users pay per
click, absorbing brand messages in addition to the con-
tent they came to see.

Simple, right? Actually, it is. Advertising has always
worked this way, whether in a newspaper, roadside bill-
board, or 30-second television spot. But there’s a simple dif-

ference. On the Web, advertisers can tell if it’s working and,
more importantly, when it’s not.

Historically, the metrics of advertising have been struc-
tured as “impressions” versus “performance.” An easier way
to think of this is how often a particular ad was viewed
compared to how often the person viewing it acted in a
measurable way. In the television industry, Nielsen ratings
were compared to sales of a product or calls to a toll-free
number. Print-based messages held up circulation numbers
to other, simple measures of reader response. The Web,
once again, changes everything.

Our Web servers do a great job of spitting out every
painful detail of every thing they do. This means we don’t
have to rely on the guesswork of other media to see how
our products are doing. A magazine, for example, may
offer two numbers to their advertisers: the literal number
of subscriptions, plus a guess at the total reach, or how
many times each copy is passed along to others to read.
No need for that on the Web. We know exactly who
surfed our site and when, with what browser at what
address, and exactly what they looked at and for how long.
We can also tell precisely which advertisements they saw,
and which ones they clicked.

Imagine, for a moment, if television advertisers could
tell when you changed the channel during commercial
breaks, or when you hit the mute button, or got up to get a
snack. Guess what would happen if they could get those sta-
tistics for every household with a television set. The model
would collapse. Advertisers would obsess over the massive
decrease in reach. They would petition television manufac-
tures to stop including remote controls with their units.
They would do absolutely anything to make you stay glued
to the set.

Obviously, this is playing out today on the Web. The
total number of online advertising impressions is skyrocket-
ing. There is more Web traffic today than there ever has
been; AOL and Yahoo page views per day only scratch the
surface of the possible inventory a Web advertiser has to

ASWD_001121.qxd 11/27/00 11:19 AM Page 192

Chapter Seven - Adver t is ing 195The Art & Sc ience of Web Design194

choose from. But the news isn’t all good. Yield—a statistic
derived from the number of impressions divided by the
number of clicks to ad units—is falling dramatically.

Why is this? Two reasons: Traffic is a commodity, and
the ads themselves are just so bad.

“We Interrupt This Message…”
So that’s the state of the Web: Impressions are going up;
yield is going down. The result? Advertising rates are drop-
ping (because there’s so much traffic to the big sites) while
advertisers—still interested in the Web as a vehicle for
brand promotion—are becoming increasingly unsatisfied
with the keenly measured results of their campaigns. A very
bad situation for those of us making a living turning traffic
into dollars.

You can see Web sites responding everywhere you look.
While traffic may be increasing, it’s generally going to the
massive portal sites like Yahoo, Excite, or Lycos, who, in

turn, can undercut advertising rates. We’re left with a
vicious circle that cuts into the price sites can charge for
their advertising. The rest of the Web, and the bulk of the
commercial sites, must somehow increase traffic in order to
stay alive.

Getting more people to come to your site is expensive,
as is getting them to come more often. So how can you
increase traffic? Change your interface. Give them plenty to
click on and make them do it. Stretch out your content
over multiple pages. The “Click Here for More” syndrome is
running wild across Web interfaces, not because it’s easier
for users but because it generates more page views, thereby
showing more ads. It’s ease of use versus revenue. It’s a tenu-
ous balance.

But don’t forget about yield—that magical number of
banner impressions versus clicks. You can triple your page
views, but if you don’t skim enough of those users off the top
and send them to your advertisers, you still won’t be success-
ful. Since the creative control of ad
messages resides with the advertisers
and not you, it means your interface
once again must be sacrificed. Now,
instead of constructing a visual hierar-
chy on the page that makes sense to
the overall architecture of your site,
you must interrupt the flow as often as
you can with commercial messages.

Here’s a classic example. Surfing
through an otherwise wonderful site, I
was struck by the absurdity of untarget-
ed advertising. I came to the page
shown above, an interesting commen-
tary on the future of the general-purpose personal computer.
The advertisement, however, implored me to divert from my
intended purpose and instead “Get my Horoscope!” Couple
this with the fact that the ad sports a frustratingly deceptive
interface—the text box and submit button are part of the

Traffic is consolidating across the Web’s largest sites, causing a decrease in adver-

tising prices. As ad revenue drops, interface designs will need to be more creative

when balancing audience and sponsors. These numbers are from MediaMetrix.com’s

September 2000 report.

I’m looking for computer-related commen-

tary, but ZDNet wants me to check my

horoscope. Is it any wonder advertising

effectiveness is decreasing on the Web?

60,988,000

52,679,000

51,425,000

30,780,000

26,958,000

UNIQUE VISITORS PER MONTH

AOL Network

Yahoo!

Microsoft Sites

Excite Network

Lycos

ASWD_001121.qxd 11/27/00 11:19 AM Page 194

Chapter Seven - Adver t is ingThe Art & Sc ience of Web Design

image, and trick users into thinking they can act, when in
fact they merely click through to the site.

My particular affinity for astrology notwithstanding, it
was immediately apparent to me how easily it was for an ad
banner like this to fail. Distracting and annoying design,
false interactivity based on deception, and completely inap-
propriate targeting: It’s no wonder advertising on the Web
is proving less and less effective with junk like this proving
to be the norm rather than the exception.

“Click Here, You Idiot”
Most of us are often annoyed by advertising. Whether driv-
ing in our cars with the radio on or trying to get through
the last two minutes of a football game, there comes a point
when we’ve had enough. But commercial messages are as
inevitable as death and taxes.

The same holds true for advertising on the Web, of
course. If our industry’s tenuous business models are any
proof, reliance on advertising is something that won’t be
disappearing any time soon. So it’s not surprising that some
online advertisers are becoming dismayed with the ever-
decreasing performance of their banners. We, as users, see
so many ads that we simply ignore them. And that’s not
something advertisers can afford.

Therefore, some advertisers will go to any means neces-
sary to get your attention. In fact, some will go as far as
deception to gain your click.

Some advertisers I’ve spoken with say that consultants
and agencies recommend banners that mimic operating sys-
tem interfaces, because these ads increase clickthrough
yield. So advertisers blindly submit ads that look like dialog
boxes or download-progress indicators, aiming to trick peo-
ple into clicking through to their sites.

Know what? In fact, they do work.
I’ve consistently seen clickthroughs on banners like this

double or even triple the average yield across our sites. And
the cycle perpetuates: Agencies continue to promote ads like
this to their clients because the numbers prove they work.

Know what else? Click-through rates mean nothing.
In user testing, I’ve seen subjects fall for these deceptive

banners again and again. They’ll come to our search inter-
face, type a query, and are presented with a “dialog box”
that tells them their “Internet connection isn’t optimized,”
or some such nonsense, and then an “enhancement” is sup-
posedly downloaded. Users go for the Cancel button, but it
sends them to the company’s homepage. They are confused
and disoriented. They scan the page and suddenly realize
what has happened. And then they immediately hit the
Back button, often with a few choice words about the com-
pany. Is this the user experience the advertiser was after? Is
this what click through is meant to represent?

Advertising should entice, not deceive. Good advertis-
ing is valuable to a targeted audience, and great advertising
builds a relationship between customer and client.

Personally, I try not to start relationships with lies.

The Medium Is the (Commercial) Message
Television advertising works so well because it exploits the
powerful aesthetics of the medium. TV ads tell us stories;
they are 30-second narratives that evoke emotion and
draw us in. Print ads, likewise, succeed by taking advan-
tage of the information density allowed by that particular
technology. So why are Web ads trying so hard to be what
they aren’t?

How many Web ads have you seen that try to emulate
the emotion of television, or the depth of print? And how
many of those are successful? Few attempts at providing an
experience within the constraints of the banner have even
come close.

Rather, Web ads need to exploit the very things that
make the Web so interesting. We’ve already seen how the
accountability of the Web has made advertisers nervous.
But why aren’t they leveraging that massive amount of
behind-the-scene data? Ad targeting may be common today,
but it’s only in its infancy, and certainly it is not being
exploited by the advertisers complaining the loudest.

196 197

ASWD_001121.qxd 11/27/00 11:19 AM Page 196

It is an unfortunate fact that short-sight-

ed advertisers continue to pollute Web

sites with banners designed to confuse

and deceive users. Below are a collec-

tion of some of the worse offenders.

These banners have been designed

explicitly to mimic computer operating

system interface elements like dialog

boxes and search forms. The goal, of

course, is to trick unsuspecting users

into clicking. Some provide a false

search interface that users will mistake

for site functionality, other banners tell

users something bad is about to hap-

pen, and offer a “cancel” button that

navigates the poor visitor to the adver-

tiser’s Web site. Some use animation to

trick users into thinking something is

being downloaded to their computer,

causing unsuspecting users to panic into

clicking the offending material away.

Ironically, some of these screenshots

were taken from a Macintosh. Not only

do these banners attempt to deceive,

but they also manage to offend users

by not even bothering to offer them an

experience appropriate to their operat-

ing system. Why so many advertisers

attempt to fool new customers into their

sites is a mystery. And considering the

usability nightmare these nonsensical

banners create, we can only hope this is

a temporary fad.

Of course, not every banner with an

interface is deceptive. Some honestly try

to provide a useful service within the

narrow constraints of a Web-based

advertisement. LinuxCentral, for exam-

ple, ran a series of advertisements offer-

ing Linux aficionados the ability to sign

up for a free newsletter without ever

leaving the site they were visiting.

However, it’s important to remember

that even advertisements have usability

standards. In the LinuxCentral case, for

example, failing to actually type an

address into the banner before submit-

ting results in a less-than-elegant error

message. The point remains: Advertising

is often the beginning of a relationship

with a new customer. First impressions

are everything.

The Ad Banner Hall of Shame

198 199

ASWD_001121.qxd 11/27/00 11:19 AM Page 198

Chapter Seven - Adver t is ing 201The Art & Sc ience of Web Design200

There’s no excuse for untargeted advertising on the Web
today. There’s no reason I should encounter a solicitation to
check my horoscope from a banner on a site offering com-
mentary on the future of computing.

Do a simple search on any major search engine—try “free
e-mail”—and see how the advertising responds. When I
tried this on two competing sites, the results almost magical-
ly proved this point. I took a screenshot, above, of the first
site I tried. Searching for “free e-mail,” I found that the
results weren’t too bad, although you’ll notice that none of
the results show up on my screen without scrolling. The
advertisement in this layout is the center of importance:
placed dead center on the screen with no distractions near
it, and surrounded by plenty of whitespace. But then the
inconsistency hits. Why would the most prominent part of
this interface, obviously designed to help me find resources
for free e-mail on the Web (since that’s what I asked for),
lead me to searching for the price of a car?

The only possible corollary to an advertising strategy
like this in real-world advertising would be the highway
billboard. While I’m busy driving to the store, I notice sig-

nage on the shoulder telling me how wonderful the new
Toyotas are. Six months later, when buying a car, the ad
pops into my mind. Can you measure the effectiveness of
the billboard? Doubt it. But you can see why traditional
advertisers are befuddled by the lack of response by Web
users to their traditional approaches.

So I tried my “free e-mail” query on another search
engine. This time, along with similarly appropriate result
listings, I was presented with the simple, animated message,
pictured above. “Send and receive e-mail from anywhere on
Earth.” Yes, Yahoo is advertising their own product. But
why not? The match is exactly what I’m after.

Getting Personal
So if targeted advertising works better, why don’t more sites
use it. We’ve already discussed the difficulty small sites have
in generating revenue from their respectively little traffic. If
targeting ads proved twice, three times, or even an order of
magnitude more effective, then they could charge an appro-
priately scaled rate for these ads. Small traffic, plus a perfect

Asking another search engine for free e-mail, I get the

response I’m after. It’s no wonder well-targeted advertising

can increase yield by an order of magnitude.

Even though I explicitly tell the search engine I’m after free e-

mail, the site responds with an advertisement for a car. A

wasted ad impression.

ASWD_001121.qxd 11/27/00 11:19 AM Page 200

Chapter Seven - Adver t is ing 203The Art & Sc ience of Web Design202

audience may actually keep the smaller sites (and the bigger
ones, for that matter) alive and well. Is it really that hard to
start matching a commercial message with a willing audience?

Of course not. Magazine publishers have long been able
to target specific demographics and attract specialized
advertisers eager to reach those eyeballs. Even television,
especially with the explosion of cable and satellite chan-
nels, has been able to find higher-value niche audiences.

However, the Web excels at this. Even though surfing
the Web is a fairly anonymous activity, there is a distinct
trail of bread crumbs following each user of each site out
there. Add to that the capability to meld that data with a
wealth of past data plus any and every bit of information
given explicitly by users, and even the smallest Web sites
can provide appropriately functional commercial messages.

The trick is to know what data you can get, and how to
do it.

Use your imagination again, and picture in your mind a
big spreadsheet—like a new document in Excel. The rows
of this spreadsheet have names in them. These are the users
of your Web site. All of them are listed individually down
the first column of your table. Now picture columns across
the top, each labeled with a different thing that we either
know or can figure out about a each user. One might be
labeled “browser version,” another “zip code,” maybe even
“online stock trader?”

For each of your users you’re building a profile. By build-
ing this profile, you can provide services that are created for
each individual user, not the least of which is advertising
that they actually find useful. Let’s take a look at three dif-
ferent types of profiles in use on Web sites today:

• Environmental. Your site can and should make deci-
sions about what to show your audience based on
what the browsers and servers know about each other.

• Preferential. Users like to customized their surfing
experience. What they tell you is critical… if
you’re listening.

• Historical. As users come back to your site, you
should remember what they did the last time they
were there, and make it easier to do that.

Environmental Issues
Every time you type a URL into your browser or click on a
link, you’re acting as a matchmaker. In essence, your telling
your browser—the client—to politely introduce itself to a
particular Web site—the server—and start an intimate con-
versation. Information is passed back and forth between the
two until they strike up a friendship, form a relationship,
shake hands, and a page appears on your screen. Think this
analogy doesn’t really apply? See it all the way to its logical
conclusion: uninstalling Internet Explorer from Windows is
not at all unlike a messy divorce. But I digress…

Let’s look at what is really happening as you surf the
Web. And, more importantly, what that has to do with this
advertising effectiveness we’ve been talking about.

Since the Web is, as we’ve seen, basically a collection of
standards and protocols, it’s not surprising that the way data
is sent back and forth is done so in a consistent and effi-
cient way. It’s called the Hypertext Transfer Protocol and is
shortened to HTTP, which you probably recognize from the
Web addresses you see over and over again during your
online travels.

HTTP is just a simple method for sharing information
between servers and browsers on the Web. For this discus-
sion, we’re not particularly interested in how it really works.
There are plenty of specifications and technical documenta-
tion that describes various jargon-filled network voodoo.
For us, the really interesting part is what gets passed back
and forth.

Getting back to our original introduction analogy, when
your users first point their browsers at a server, a network
connection is established. Almost instantly, the browser
tells that server all about itself—it broadcasts what we’ll call
the user environment. First of all, it needs to tell the server
where it is, via IP address, so it can send the requested page

ASWD_001121.qxd 11/27/00 11:19 AM Page 202

The Art & Sc ience of Web Design204

to the appropriate place. But there’s more to it than that.
The browser identifies itself, sending not only its particular
brand name (Netscape Navigator, for example), but also
which version (4.05), and which operating system it’s run-
ning on (Win98). Suddenly, the server—or more impor-
tantly, you as developers and designers—know exactly what
software your audience is using to visit your site, and where
exactly they’re coming from. Is this starting to sound famil-
iar? This is the exact process we used in Chapter Four,
“Behavior” to determine the screen resolution for sizing
headlines. It’s also how I suggested building appropriate
interfaces for different users in Chapter Five, “Browsers.”

You can start to fill in the little boxes in your spread-
sheet for this user. You can look up her IP address, find out
that she is surfing from a Fortune 500 company, and put a
check in that box. You can tell she is using the latest ver-
sion of her browser, and if she is coming to your from the
ever-popular Windows operating system. No need to pitch
Macintosh hardware in the ad banner, but considering their
employer, a special offer on business travel may just get that
click. The amount of information that passes between the
browser and server can be amazingly deep. More little boxes
to fill in with more interesting statistics about each and
every member of your audience.

It gets really interesting, though. when they start coming
back on a regular basis.

Building History
“Good morning!” says the woman behind the counter at
the café as a wave of recognition sweeps across her face.
“How was your trip to New York?” She reaches for my usual
variety of caffeine and rings up the total all the while I’m
blabbering on about this hip little Mexican restaurant in
the West Village.

Now that’s service, and it is the obvious sort of relation-
ship that builds a strong business over time (and one of the
reasons San Francisco residents so adamantly fight off
national chains in their neighborhoods).

205

It’s funny how something that sounds so

tame can cause so much controversy.

But that’s exactly the case with the

often-misunderstood HTTP Cookie. The

cookie is simply a little chunk of infor-

mation stored on your computer by a

server when you visit a site. For exam-

ple, when you visit a site that requires

that you enter a name and password for

access (like a Web-based e-mail service),

you’ll often see an option to “Remember

me in the future.” Clicking that option

allows you to skip the login process in

the future. Behind the scenes, the Web

server sets a cookie in your browser,

which is then saved on your computer.

In that cookie might be a unique identi-

fier for you, so that when you return to

the site, the server can ask for the cook-

ie, look up your ID, and log you in. In

the real world, it’s very much like leaving

your car with a valet. You give him your

keys, he gives you a ticket. That ticket,

like a cookie, allows you to get your car

back when you return. It identifies you

and gives you access to your valuables,

while not associating you with any per-

sonal information.

The controversy surrounding cookies

has two sources. The first is the mis-

guided fear that cookies are an invasion

of your privacy; that they allow

unscrupulous Web servers to wander ad

hoc through the private data on your

computer. This is false, of course.

Cookies can only be read by the sites

that wrote them, and there is no other

possible access to information stored on

your machine.

The second, more imposing fear,

comes from large advertising services like

the DoubleClick Network. DoubleClick is a

service that allows Web sites to include

advertising banners without having to

manage the scheduling, serving, and

reporting. For the sites, it’s a big

win–they can simply outsource all of that

work by including ads from DoubleClick’s

servers in their pages. The trouble comes

from the fact that DoubleClick can then

set a cookie when you visit a site. Say

you visit a sports site, then a financial

site, then a software download site. If all

three sites are DoubleClick users (and

increasingly, they are), then DoubleClick

can tell what sites you’ve been to, and

what you’ve looked at. DoubleClick, then,

can build profiles of you across all the

surfing you do. And this rightly freaks

people out.

Just don’t blame the cookies…

Understanding Cookies

ASWD_001121.qxd 11/27/00 11:19 AM Page 204

Chapter Seven - Adver t is ing 207The Art & Sc ience of Web Design206

So why, after visiting the same dozen Web sites day after
day, do none of them show a similar interest in my tastes
and interests? Wouldn’t it be a Really Smart Thing for them
to shape and mold themselves progressively as I visit over
and over again? Well, yes and no.

We’ll take the “no” part first, which essentially boils
down to the fact that it can be really hard to do.

Your Web site will have a lot of users: maybe thousands,
maybe millions. They all visit you with one goal in mind.
What is that goal? Who knows! They’re all different and
they all want some elusive thing from you. If you can keep
your Web site simple enough that there’s really no choice,
then you’re probably off the hook. If not, there’s probably
some work you could do here. Think of the difference
between a site that simply offers a picture from a camera
pointed at a fish tank versus a highway traffic site with
dozens of cameras pointed at dozens of roads. You come to
look at the fish and it’s fun and strangely compelling—you
can start to see a lack of geography in the Web and begin to
understand the meaning of interconnected diversity. But
that’s it. You look, you’re amused, you leave. The traffic site
embodies many of those same feelings, but also accomplish-
es something the Web is exceptionally good at: providing
crucially useful information at the exact time you need it.
In other words, it provides appropriate functionality to a
hungry audience.

But here’s our simple theory at work. Every time you hit
the traffic site, you have to follow the same click-through
path to the particular views you want. Wouldn’t it be won-
derful if you could simply tell the stupid site which views
you’re interested in, have that site remember all of them,
then let you return every day for an instant view of just how
dreadful your commute will be?

Well, of course. And this particular strategy has been
used ad nauseam across the Web, always designated with
the prefix “My:” My Travel Agent, My Music Store, My
Financial Portfolio, My Huge Boring Portal. It works.
People love to customize a page, tweak the layout and color,

and feel a sense of ownership. Naturally, it’s a wonderful
way to get people to invest in your site and build that reten-
tion so critical in building a traffic base necessary for success
in the cutthroat business environment
that we’ve been talking about. This is
preferential profiling: building a relation-
ship with your users based on what
they’ve previously told you.
MyNetscape, for example, asked me
for my zip code when I customized the
weather module in their interface.
Netscape now knows where I live, and
can target advertising to my region.
Add to that, preferences like birth
date for horoscopes, my financial port-
folio, what sports teams I follow, and
what TV channels I’d like listings for,
and you’ve got a pretty detailed view
of what advertising will appeal to me.

But there is something deeper you
can do, often overlooked by those bar-
reling ahead to build a customized ver-
sion of their site. At first glance, it
may seem like a creepy sort of Big
Brother approach. I’ll call this method
historical profiling—tracking and
remembering what a user has done in
the past and using that to make discus-
sions about what to do in the future.
Good e-commerce sites, for example,
will use a customer’s past purchasing
history to promote merchandise on
future visits. A quick look at
Amazon.com’s home page shows this
theory in practice. My Amazon home
page will be very different from yours,
even though I’ve not explicitly told
them about my interests. I’ve simply

MyNetscape is a good example of pref-

erential profiling. Users can customize

virtually anything here, from the color to

layout to specific details about the con-

tent. The result is a tailored Web experi-

ence for the user, and a detailed under-

standing of the audience for the site.

ASWD_001121.qxd 11/27/00 11:19 AM Page 206

Chapter Seven - Adver t is ing 209The Art & Sc ience of Web Design208

purchased enough books and music
from them to allow them to infer my
taste. Thus, a strange mix of Computer
Interface books, Sea Kayaking Guides,
and Monty Python movies greets me
with each visit to the site.

Designing Good Advertising
Good advertising need not even look
like traditional advertisements. There

is no question
that standard ad
banners on stan-
dard Web pages
can get lost.
After all, users
will only pay
attention to so
much periphery
information on
their way to
accomplishing

their desired task on a site. But what if
that advertising was an embellishment
of those goals? What if sponsors paid
to promote themselves in the context

of the functionality of a Web product?
In the print world, there is usually a clear separation of

editorial content and advertising. Newspapers, magazines,
and other printed materials will often go to great lengths to
identify what was generated by the publication, and was has
been paid for—but not always. Take as an example the busi-
ness yellow pages in your local phone book. The functionali-
ty of those pages is perfectly clear: to connect you with busi-
ness in your area. The architecture is one of alphabetical
subjects, and the presentation is generally uniform. Uniform,
that is, except for the merchants who have paid more for
additional space. The phone book is designed and perceived

as a comprehensive reference, but within that context is a
business model that users of the book can respect and appre-
ciate. Can the same hold true for Web sites?

The Mapblast! Web site (www.mapblast.com) provides an
interesting example. Offering an extensive suite of tools for
generating maps, the site also integrates a sort of advertising
as a tool. Drawing a map of, say, a friend’s house in San
Francisco, I can select a variety of neighborhood business to
be added. Since we’ve decided to visit a café, I ask Mapblast
to not only show where his house is, but where all the Peet’s
Coffee & Tea locations are. I could have selected from
dozens of businesses to add to the map—from FedEx dropoff
locations to RadioShack stores to my particular brand of
ATM. Obviously, these companies are sponsors of the

Mapblast not only shows me where my friend’s new apart-

ment is, but lets me display where my favorite café is in rela-

tion. A paid sponsorship is unobtrusively filling the role of a

site feature.

Amazon uses historical profiles to sug-

gest other content (in this case merchan-

dise) that I might also be interested in.

ASWD_001121.qxd 11/27/00 11:19 AM Page 208

Chapter Seven - Adver t is ing 211The Art & Sc ience of Web Design210

Mapblast service. But it’s interesting to see how brand mes-
sages and useful functionality can coexist in Web products.

When the goals of an advertising message match the
goals of a user at a specific moment, the advertising will
succeed. But Web sites need to move beyond simple key-
word targeting, and begin to target based on user environ-
ment, history, and even preference. How much would our
industry pay for a banner that drew a 50 percent click
through? Enough to stop worrying about bulk traffic and
sacrificial user experiences.

There are interesting implications for design. Good
design comes from not only knowing your subject matter,
but from an intimate knowledge of your audience. As it
turns out, the same is true for good advertising. On the
Web, then, targeted advertising and targeted user interfaces
are the same thing. And the same profiling strategies can
apply to both. But to fully exploit either, we’ll need to think
about Web design in a much more dynamic way.

Until then, we’re stuck with ugly advertisements that
don’t work on sites desperate for traffic. Please, enough of
the shotgun approach. Market to me!

ASWD_001121.qxd 11/27/00 11:19 AM Page 210

Chapter Eight

Object-Oriented
Publishing

The distinction between ‘design’ and
‘programming’—or the even more disturbing
nomenclature of ‘technical’ and ‘creative’—is
artificial. They are as intertwined as the art and
science of Web design itself.

There was a time when all Web pages were simply text files on a Web server, for-

matted in HTML, and updated by hand. Building effective and manageable Web

sites today requires dynamic, page-generating tools. From simple include files to

massive database-driven template systems, we’ll look at how the basic process of

design and development is changing. No longer can designers building mere

pages. Rather they’re working on creating effective interfaces that expose the

power of content “systems.” Design elements can be combined and rearranged in

infinite ways, making maintenance a breeze if designed with a deep understand-

ing of system from the beginning. And considering the cost of building and

maintaining Web sites, this strategy might not be an advanced theory on the

future of publishing online. It may be the only means for survival.

[8]

ASWD_001121.qxd 11/27/00 11:19 AM Page 212

The Art & Sc ience of Web Design214 Chapter Eight : Object-Oriented Publ i shing 215

To be honest, Web design isn’t all that glamorous. In
fact, when I started in this business years ago my first job
was, in essence, to be a human Perl script. I sat in a dark
corner of the Wired magazine offices in San Francisco
and if you asked someone what I did, they’d likely tell
you, “Uh, I think he has something to do with our
America Online area.”

Each month, as Wired published their print version of
the magazine, I would convert their work into something
appropriate for our fledgling online outlets. I’d take a
SyQuest cartridge (remember those?) full of QuarkXPress
documents and strip the text out and save various copies
into various directories. Then, I’d go through and convert
each directory full of content into the correct format. We
were experimenting with as many forms of electronic pub-
lishing as we could, trying to see just what would replace
print when it died at the hands of the Digital Revolution.
(Did I mention our zealous conviction that history had
nothing to teach us?) One version added commands for
AOL’s publishing system that allowed us to upload files
there. Another formatted the stories for our e-mail respon-
der. And there was even a directory full of files in a strange
new language called HTML.

I did these translations by hand at first. I would carefully
open each file, add the appropriate formatting, and save out
the file to the right location. As you can imagine, it was a
process rife with error. The more files I would format at a
time, the more mistakes I would make. I was, I suppose,
only human. There were a couple of solutions, one of which
entailed finding someone to do the even more mundane
task of looking through the files scanning for mistakes.
Rather, I started using macros on my Macintosh to format
the files. I’d open a file with the plain text of a story, then
select a macro script called something like
“FormatFeatureForAOL,” which would add the appropriate
codes in the appropriate places, and than resave the file.
Bingo! No more stupid formatting errors. My macros never

got tired. They never forgot where they were in the process.
They never made mistakes.

But why stop there? Wouldn’t it be wonderful, I thought,
if I could eliminate myself from the process entirely? Even
though my files were now error free, I was still sitting in
front of the computer for hours choosing the right macros
to run and moving files to the correct servers. Then a guy a
few desks over suggested something interesting. “Why don’t
you just dump all that text into a FileMaker Pro database?
You could write a few scripts to run through and format
everything and you’d be done.”

So we did. I installed FileMaker Pro on my Mac and got
some help setting up a simple database with some scripts for
formatting the stories. The database itself had one “record”
for each story, sort of like a recipe file—except that instead
of a list of ingredients we had a collection of story parts:
headline, author, date, content paragraphs. The scripts were
pretty simple once we had pasted the stories into the right
locations in the database; they were similar to the macros
I’d used before. Each script would take all the pieces of a
story and reassemble them into the differently formatted
files I needed. The birth of a publishing system!

One day, a few weeks later, something clicked in my
head. I had been running my little database for while and
had a few hundred stories packed away in it. A few of us
had been talking in a meeting about changing the way our
rather primitive Web site worked (this was before
HotWired.com even existed), and decided to add a few
more links to each page on the site. The links would all
point to the same pages, and would be identical for each
story. It would mean not only changing the template for
new stories, but also reformatting all the stories that were
already online. “No problem,” I said. “I’ll just change the
FileMaker script and re-run it on all the stories.” Later that
afternoon, we had those hundreds of stories updated and
posted to the Web site. What would have taken days of
copy-and-paste monotony was replaced with a couple hours
of script tweaking and file copying.

ASWD_001121.qxd 11/27/00 11:19 AM Page 214

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing216 217

Ah, hindsight. Looking back, I scratch my head and
wonder why on earth we used such simple tools on under-
powered machines. Wouldn’t that be a job for Oracle run-
ning on a big Sun server? Maybe we should have given the
magazine editors SGML authoring tools for document struc-
turing and done post-processing to multiple output devices.
At least we should have been using Perl.

Or maybe we had to take a few baby steps toward a
dynamic publishing system with the tools we understood.
Many of my friends in this industry have similar stories of
days past. One built a template system using HyperCard;
another used Lotus Notes. It didn’t matter how comfortable
we were with scripting or databases. It didn’t matter which
computing platform we were accessing. Everyone was trying
to solve the same problem: How do you maintain a site that
grows at the speed of the Web?

Getting Dynamic
Web sites face the same problems today. Sites continue to
grow as fast as they ever did. The owners of these sites still
change them as often as ever.

I call this process Object-Oriented Publishing. In the
world of Computer Science, the term Object-Orient
Programming (OOP) refers to a way of designing programs
out of reusable objects in standard ways. For example, in a
financial application, you might write an object that repre-
sents a check, with routines (called methods) that allow
you to set the date, the recipient, the amount, and the
memo information (which are known as properties). Each
time you create a new check, it uses the same code to pro-
duce itself, to set/access its properties, and so forth. Object-
Oriented Programming gets exciting when you start to
think about just how much you can reuse the objects, not
just in your programs but by exchanging objects with oth-
ers. That way, when you sit down to write your financial
application and discover you’ll need a currency exchange,
you can simply include one that someone else already has
written and move on. (Well, in theory, of course. OOP

standards may be well documented, but implementation of
these standards is much like the reality I described in
Chapter Five, “Browsers.”)

Operating Systems work that way too. If you’re writing
an application for the Macintosh OS or Windows, you don’t
need to write elaborate chunks of code to make a dialog box
appear on screen. You can simply call the dialog box object
and pass to it the things you want to appear on it.

I’m oversimplifying a very technical and abstract disci-
pline, of course, but the principles are interestingly analo-
gous to publishing systems on a Web site. Much like the
simple FileMaker database and scripts that I used to publish
the early Wired pages, sites today use databases full of con-
tent that get pushed through templates to create Web pages.

Object-Oriented Publishing is lightweight. Dynamic
Web sites are built using relatively simple scripting lan-
guages. Even if you have never attempted to write a line of
code, you can see results almost instantly. We are not talk-
ing about compiling code or using debuggers.

I’ve spoken to a number of Web designers on all sorts of
Web sites, and I’ve heard a common theme to many of their
complaints. They talk about working with publishing sys-
tems or template languages in their organizations, but they
feel completely cut off from how they work. “Oh, I can’t
change that part of my site,” they say. “The programmers
take care of that.”

If there is one important thing you should take away
from this chapter, it is that anyone—anyone—can partici-
pate in the development of dynamic Web sites. The distinc-
tion between “design” and “programming”—or the even
more disturbing nomenclature of “technical” and “cre-
ative”—is artificial. They are as intertwined as the art and
science of Web design itself.

For this reason, we’re going deconstruct an Object-
Oriented Publishing system behind a relatively simple site. I
could have chosen a large-scale commercial content site, or
an e-commerce powerhouse with a triple-digit stock price.
Instead, we’re going to look at a small site from a

ASWD_001121.qxd 11/27/00 11:19 AM Page 216

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing218 219

Presbyterian church in San Francisco, California. This site
faces the same problems as many others: With limited staff
and resources, how can this organization maintain a Web
presence that can expand quickly yet still present a profes-
sional and organized look?

The site is not terribly complex, yet
there are a number of pages that need
to be maintained by a staff unfamiliar
with the peculiarities of building Web
sites. To accommodate the desire for
an organized look and feel, the site was
developed using a series of scripts that
run on the site’s Web server. This
ensures consistency across the many
pages of the site, while freeing the
church’s staff to focus on developing
the content.

One of the goals of this Web site
was to act as a repository for the ser-
mons delivered during weekly worship
services. Adding a page or two a week
to a simple Web site may not seem
like a very time consuming task, but
there are quite a number of fairly
technical steps involved—converting

the Microsoft Word file of the sermon to HTML, ensuring
proper navigation and branding exist on each page, trans-
ferring the file to the right place on the Web server, etc.
In fact, the church was facing the very publishing prob-
lems we faced at Wired magazine years ago—the same
problems shared by most any Web site wishing to update
with any regularity.

Looking at how the church solved this problem is an
excellent primer to Object-Oriented Publishing. We’ll start
with an introduction to the entire process, then drill down
into each part, using the church’s sermon archive as an
example. In the end, it should be clear just how easy it can

be to get started with a system like this, and what the impli-
cations are for good Web design.

To start, we need an understanding of the process.
Below, I’ve outlined the basic steps for creating a Object-
Oriented Publishing system.

1. Strip your content of all formatting.
2. Figure out what the pieces are.
3. Store those pieces in a database (or something similar).
4. Design some templates.
5. Wire it all together.

We’re going to follow these steps as we develop a basic
publishing system for Calvary Presbyterian Church’s Web
site. In the end, we should have a virtually maintenance-
free site that can be updated by someone with even the
most basic computer skills.

Naked Words
Before we can even think about what the pages are going to
look like, we need to understand exactly what the content
is. In the case of the sermons, the structure of each piece of
content (or the schema to use database jargon) is pretty well
defined. Each sermon was sent to the site’s manager as a
Microsoft Word file with the following information:

• Title: What the sermon was called. Essentially
a headline.

• Pastor: Who wrote and delivered the sermon.
• SermonDate: When the sermon was delivered.
• Text1: A passage from the Bible that accompanied

the sermon. Not the actual text, but a pointer con-
sisting of book, chapter, and verse.

• Text2: Often, there would be a second passage.
• Body: The paragraphs of content.

The process of identifying and labeling each component
of a story is critical to the eventual success of a system like

A simple Web site for a church in San

Francisco. Yet it uses the same publish-

ing techniques as some of the largest

sites on the Web.

ASWD_001121.qxd 11/27/00 11:19 AM Page 218

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing220 221

this. In time, we’ll be using these little pieces of each ser-
mon to design templates and create navigation. Think
about the pages on your Web site and how the content
could be broken up into little pieces. For example, if you are
responsible for job postings on a corporate site, you might
develop a schema like this:

• Job Title
• Department
• Description
• Open Date
• Requirements
• Salary Range
• Contact

Or, if you’re developing an e-commerce site, each prod-
uct page might have a schema like this:

• Item Name
• Description
• List Price
• Price
• SKU Number
• Shipping Options
• Current Stock

You get the idea. This is simply a process of defining the
content you’ll be using at as fine a grain as practical. I sug-
gest being as explicit as possible. Write down all the pieces
just like I did above. Think about all the possibilities for the
content. In the first example, could a sermon ever have
more than two Biblical passages associated with it? If so, I’d
need to make a note of that now. Describe each one as
clearly as possible, including what type of data it is: Date?
Number? Text?

Thinking About Architecture
It’s time to do some technical work now. We’re going to
take the schema we just documented and create a database
to hold the content. But before we do that, it pays to take a
quick overview of how systems like this really work.

You may have heard the term “three-tiered architecture”
thrown around in the past. This is simply more jargon for
an overall structure of system design. When applied to the
type of system we’re developing here, a three-tiered archi-
tecture means something fairly specific: It refers to the basic
components of an Object-Oriented Publishing system. Here
are the three tiers:

• Backend Database: This is where the content is
stored. Some popular databases include Microsoft
SQL Server, Oracle, Sybase, and the open source
MySQL.

• Middleware: A server-based application that pro-
cesses requests for pages and provides a scripting lan-
guage for writing templates. Some popular middle-
ware packages include Microsoft Active Server Pages
(ASP), Allaire’s Cold Fusion, and the open source
PHP. We’ll talk more about these a bit later.

• Interface: This refers to the HTML code that gets
sent to your users’ browsers.

I’m writing this on a relatively standard laptop running
the Windows 98 operating system. Also running on this
machine is Microsoft’s Personal Web Server (which
includes the ability to process ASP templates) and the
Access database software that ships with Microsoft Office.
All of this software is readily available and either free or rel-
atively inexpensive, which is why I chose it for this demon-
stration. I wanted to provide an example that you could
recreate on a standard PC. Obviously, you would never use
Microsoft’s Personal Web Server for a site with any amount
of traffic—and there are dozens of other choices for each
option above. Ultimately, the process for choosing the right

ASWD_001121.qxd 11/27/00 11:19 AM Page 220

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing222 223

pieces is complicated and specific to every Web site. It’s the
reason why we pay our Chief Technology Officers so much.

Just remember: Anyone can experiment with dynamic
publishing. This isn’t just the domain of engineers, database
analysts, or any other IT professional. Getting started is
simple. The principles and techniques are easy to under-
stand. You can install the tools on your personal computer
and appreciate how it works from the inside. It will make
you a better designer.

Database Design
Let’s get started building the system. Since I have the
schema for the sermons defined and documented, I can now
create a database that will mimic it. That way, I’ll be able to
store all of this content in a well-structured place and know
exactly what to ask for when I want to get it out again.
Since I put the effort into the schema, this will be a rela-
tively painless process. I start Access and create a new data-
base, then add a new table (see the sidebar, “Database
Vocabulary”).

Now, I simply add fields to the table in my database.
Like I said, this is pretty easy, since I documented my
schema first. I add each one and give it the appropriate
properties. One important note: I’ve added an additional
field labeled “sermonid,” given it a type of “AutoNumber,”
and made it the table’s Primary Key. This all means that

each sermon in the sermons table will get a unique number
assigned to it when the content gets added. That way, when
I start to put tem-
plates and pages
together later, I’ll
be able to ask for
specific sermons
by an ID number
that gets auto-
matically
assigned by the
database.

Next, I can
start adding some
content. It’s very
important to strip
any and all for-
matting from the
text at this point.
All I want in my database is plain text—not Microsoft Word
formatting, no HTML tags—nothing. All the presentation
information will be applied through a template a bit later. For
now, I want the content to live in my database in as pure a
form as possible.

together for lots of power. More on that

later in this chapter.

Fields: Each individual intersection of

a row and column in a table is called a

field. A field can be given properties like

how much data it can contain, what

type of data is allowed, or if the field

must be filled in or not.

Schema: The names and types of all

the tables and fields. More generally,

“schema” refers to the overall structure

and design of a database.

Query: To get at the information in

tables, you need to ask for it. In the

lingo of databases, this is known as a

query. Databases expect very specific

instructions on what they should be

spitting out.

SQL: Stands for Structured Query

Language, which is made up of com-

mands that you can use to ask the

database for information, or send other

commands to delete data, copy data, or

do a variety of other tasks.

Database Vocabulary

Even if you never create your own data-

base, you’ll likely find yourself collabo-

rating with someone who will. It’s

important to know how they are built,

and what the pieces are called. Here’s a

crash course:

Database: Think of this as the con-

tainer that holds everything. It is not the

program you use, even though people

often misuse the term (just as a word-

processing program is not the report you

write). Specifically, a database is the file

a database program saves out.

Table: Databases store their content

in tables, and there can be many of

them. A table looks similar to a spread-

sheet, rows of information categorized

into columns. Tables can be joined

Adding fields to an Access database.

ASWD_001121.qxd 11/27/00 11:19 AM Page 222

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing224 225

To get the content into the database, I just copy and
paste the appropriate parts of a particular sermon’s Word file
into the appropriate fields.

Fragmented Thoughts
As I mentioned earlier, I’m running Windows 98. On the
CD-ROM that came with my system, I found the installa-

tion option for
Microsoft’s
Personal Web
Server. I installed
it on my machine
and can now
serve Web pages
to the rest of the
world. More
importantly, I
can write pages
embedded with
scripts intended
to be run on a
Web server (as
opposed to the
scripts I wrote in

Chapter Four, “Behavior,” which run in the browser).
Once the server is installed, using it is a matter of point

and click. And once I’ve clicked the “Start” button in the
control panel, I can start building the site.

I’m going to start with a few existing pages for the
moment, and leave the database work for later. In the first
screenshot of the church’s Web site, you may have noticed
a navigation area near the top of the page. This navigation
bar points to thing like “Activities,” “History,” and “Staff.”
Those pages already exist as plain-old HTML. However, I’m
going to do a little bit of work to them to ensure they stay
maintainable. Looking at all those pages, I see that they fol-
low a similar layout: They all share the same header with
navigation and search. Before this project, I would have had

to edit each and every HTML file to make the simplest
change to the top of the page while still hoping to maintain
consistency across all the pages. For example, when the
church added a search engine, someone had to copy and
paste the search interface code into the dozen or so pages
that make up this site. Not a big deal for a site this size, but
how big is yours? Some of the commercial sites I’ve worked
on have upwards of 100,000 pages. That’s a lot of copying
and pasting.

The alternative is to create one header and include it in
each page. With static HTML pages, this isn’t possible. But
I’m no longer working with static pages. Rather, I’m going
to use one of the simplest functions of any middleware
package: the virtual include. First, I cut out the top of every
page on the site—everything from the beginning of the file
through the <BODY> tag—and paste it into a separate file.
I’ve called this new file “header.inc” and put it in an
“includes” directory. Then, where I cut out the code from
the original files, I add this bit of code:

<!--#include virtual="/includes/header.inc"-->

Now, before the server sends the file to a user’s browser,
it will notice that line and grab the header from the
includes directory and merge it with the HTML page. The

Installing a Web server is as easy as clicking “Start.” Now I’m

ready to build a few dynamic pages.

Server-Side Includes

Interested in harnessing the power of

consistency using “includes,” but with-

out all the complexity of a full dynamic

publishing system? You’re not alone.

Once Web designers see just how sim-

ple SSI can be, they jump at the chance

to automate their interfaces.

Most Web servers have the ability to

do virtual includes right out of the box.

The open-source Apache Web server, for

example, has the capability to do some

interesting and fairly advanced includes

and even basic conditional logic simply

by turning on “server-parsed pages” in

its configuration files. Ask the adminis-

trator of your Web server (or consult

your server’s documentation if you’re

going solo). You may be able to start

reaping the design benefits of simple

server code right away.

ASWD_001121.qxd 11/27/00 11:19 AM Page 224

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing226 227

result to the user will be seamless. Now, if I decide to make
even the slightest change to the header, I simply edit the
included fragment. The change is automatically reflected in
every single page on the site.

Creating Templates
Simple pages, simple code. Let’s add a bit more complexity
to this project. At this point, I’ve copied and pasted about a
dozen sermons from Word files into the Access database.
Now, I can create a template that grabs the content out of
the database, wraps it in my interface and design, and sends
it off to my users’ browsers.

I start the template just as I did with the previous pages
by including my standard header. These pages need to look
like every other page on the site. But that’s where the simi-
larity stops. These pages are different because they really
don’t exist. What I mean is that I’m actually going to be
creating what appears to my users to be dozens of new
pages, but it will actually be just one template pulling con-
tent from the database I created earlier. I’ll explain this
more by example.

First off, we need to open a connection to the database
and ask for some content. Each middleware package has its
own unique way of doing this. In fact, Microsoft’s ASP
technology has several ways to accomplish this. Again, it’s
important to remember here that the syntax for what we’re

doing is almost irrelevant. What matters most is the overall
architecture of this system. I’m going to create something
called a Server Object that will let me connect to the
Access database of sermons, then enable me to build a page
with the results.

<OBJECT RUNAT=Server ID=Conn

PROGID="ADODB.Connection"></OBJECT>

<%

Conn.Open "Calvary"

Set RS = Conn.Execute(SELECT * FROM sermons WHERE

sermonid = 1)

%>

The first line simply tells the server to open a connec-
tion to the database. The <OBJECT> tag is similar to the one
you may have used to include video or Flash in your Web
pages. The exception here is the RUNAT=Server attribute, as
you would expect, creates the object on the Web server
rather than in the browser. The next couple of lines start
the communication process with the database. Conn.Open
tells Access that we’re after the Calvary database, where the
sermons are stored. The next line fills a variable with the
results of our first query. In this case, we’re sending some
SQL commands to the database, asking for the following,

Code by Any Other Name…

The ASP code in the examples in this

chapter are mixed right in with the

HTML that will eventually get sent to

the browser. For this to work correctly,

the server needs to look through the

page before it sends it, and act on any

scripts that need to be executed. In the

case of ASP, these scripts are set off

from the HTML by using the angle

brackets (much like HTML) but with per-

cent symbols between them. Thus:

<% ASP code in here gets executed on

the server %>

The open-source middleware package

PHP uses a similar technique, but replaces

the percent symbols with question marks:

<? PHP code in here gets executed on

the server ?>

Cold Fusion uses tags surrounded by

angle brackets, mimicking the syntax of

HTML, but starts every server-side tag

with the letters CF:

<CFTags>Get executed on the server

and can take parameters</CFTag>

It’s worth repeating, though, that

when you get past the different formats

for the various scripting languages, they

all do the same things. Each one of

these server-side languages have their

own particular strengths and weaknesses,

but ultimately once you learn one, you’ll

understand how they all work. Keep that

in mind the next time someone argues

about the “world’s best language.”

ASWD_001121.qxd 11/27/00 11:19 AM Page 226

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing228 229

“In the Calvary database, please find (SELECT) all the fields
(*) from the first row (sermonid=1) in the specified table
(sermons).”

Now I’ve got the RS variable full of the content I origi-
nally pasted from my Word file into the database. The rest
of the template consists of my HTML with variables where
the content should be. So let’s get some of this content
onto the page.

<h1 class="title"><%= RS("title") %></h1>

Since the top of the page is already taken care of by
using our included header fragment, I can move directly
into the guts of the page. Here, I’ve added a headline
(<h1>), and then printed the title that came from the data-
base. Now, when the server processes this page, it will sub-
stitute the variable with whatever is in the database field
title in the row starting with sermonid=1. Notice how this
variable maps exactly to the fields I added when I created
the Access database, which in turn maps to the schema I
developed at the very beginning. In fact, using ASP, my
whole schema is available to me:

<%= RS("title") %>

<%= RS("pastor") %>

<%= RS("sermondate") %>

<%= RS("text1") %>

<%= RS("text2") %>

<%= RS("body") %>

So the rest of the page is easy:

<div class="pastor"><%= RS("pastor") %></div>

<div class="sermondate"><%= RS("sermondate") %></div>

<div class="text1"><%= RS("text1") %></div>

<div class="text2"><%= RS("text2") %></div>

<div class="body"><%= RS("body") %></div>

This code is optimized for a browser that supports
Cascading Stylesheets. Each of these variables could have
been surrounded by a <TABLE> and numerous tags.
And, since I’m using a dynamic publishing system, I could
very well create separate versions of this code for separate
browser versions and simply serve the appropriate one. But I
wanted to show here the connection between my original
architecture, the database structure, my template code, and
the interface code. Notice how well all of the different
pieces tie together. Just as the variable names match the
database fields, the class names that reference CSS declara-
tions match as well. Since I was very specific in how my
content was structured at the instigation of the process, the
whole system can grow from a solid foundation. Good
design doesn’t start with page layout. Good design starts at
the beginning.

I’m not quite finished with the template, however.
Since I have a complete scripting language at my com-
mand, I can manipulate a few things to get them exactly
the way I want them. For example, the date coming out of
the database isn’t terribly attractive as “11/16/2000.” A bit
of code fixes that:

newdate = FormatDateTime(RS("sermondate"), vbLongDate)

This takes the date from the database and passes it to a
built-in function called FormatDateTime, which does exactly
what you’d think it does. In this case, I’ve asked it to set the
date in one of the predefined formats: vbLongDate gives me
“November 16, 2000”.

I need to do a similar transformation on the body con-
tent, since it lives in the database without any tags at all.
Since each paragraph in the body has line breaks between
them, I can replace them (using another eponymous
built-in function) with <P> tags to show the paragraphs in
the browser:

replace(RS("body"), vbcr, "<p>")

ASWD_001121.qxd 11/27/00 11:19 AM Page 228

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing230 231

And on and on. I can change anything I like, or use
logic (if…then…else statements) to make my template
even smarter. For example, if a particular sermon only has
one Biblical passage associated with it, then we only need
to show one in our template. We can check and see if any-
thing is in the text2 variable, and only show the surround-
ing HTML if something is in there:

<%if RS("text2") = "" then %>

<!-- No code here -->

<% else %>

<div class="text2"><%= RS("text2")%></div>

<% end if %>

Reusing Chunks
The example so far only does one thing: it pulls one pre-
specified story from the database and runs it through a for-
matting template. What about all the other sermons? How
will I get them out of the database?

First, I need to add a way to reuse my template over and
over again for each sermon in the database. Remember that
SQL command I used to ask the database for the content?

"SELECT * FROM sermons WHERE sermonid= 1"

I need to replace that sermonid=1 with a way to say, in
essence, “sermonid can equal anything.” For this, I’ll use the
URL, or, more specifically, the query string part of the URL.

http://www.calvarypresbyterian.org/sermonDisplay.asp?shows

ermon=1

You may have seen URLs like this before. They point to
a server and a specific page, but then they follow that with
a question mark and one or more variables with values.
Everything following the question mark is called the query
string. Here, I’ve created a URL that sets a variable named
showsermon to the value of “1”. Now in my template, I can

ask the server to put whatever it finds in the query string
into a variable I can use on my page:

showsermon = Request.QueryString("showsermon")

Now my template has a variable named showsermon with
a value of “1”. Next, I use it in my SQL statement:

"SELECT * FROM sermons WHERE sermonid=" & showsermon

And from there, I can change the number in the URL
and automatically show the corresponding sermon from the
database. So if I send users to:

http://www.calvarypresbyterian.org/sermonDisplay.asp?shows

ermon=2

They’ll see a nicely formatted page with the second ser-
mon in the database. And:

http://www.calvarypresbyterian.org/sermonDisplay.asp?shows

ermon=3

will show them the third. One important note: In this
example, there are only three sermons in the database. If a
user were to change the number in the URL above to a “4”
or higher, bad things would happen—most notably they
would get an ugly error. Well-written, robust code should
always include routines that handle errors like this, but I’m
leaving them out for the sake of clarity in this system.

Let’s see what I’ve got so far now:

ASWD_001121.qxd 11/27/00 11:19 AM Page 230

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing232 233

<OBJECT RUNAT=Server ID=Conn

PROGID="ADODB.Connection"></OBJECT>

<%

showsermon = Request.QueryString("showsermon")

Conn.Open "Calvary"

Set RS = "Conn.Execute(SELECT * FROM sermons WHERE

sermonid=" & showsermon)

%>

<!--#include virtual="/includes/header.inc" -->

<h1 class="title"><%= RS("title") %></h1>

<div class="pastor"><%= RS("pastor") %></div>

<div class="sermondate">

<%= FormatDateTime(RS("sermondate"), vbLongDate) %>

</div>

<div class="text1"><%= RS("text1")%></div>

<%if RS("text2") = "" then %>

<!-- No code here... -->

<% else %>

<div class="text2">

<%= RS("text2")%>

</div>

<% end if %>

<div class="body">

<%= replace(RS("body"), vbcr, "<p>") %>

</div>

<%

RS.Close

Conn.Close

%>

<!--#include virtual="/includes/footer.inc" -->

Reviewing my template, I find the following to be hap-
pening: I’m instantiating an object on the server that lets
me talk to a database named Calvary. Once I open the con-
nection, I ask for all the fields in the table sermons from the
row that has a sermonid=1. Then I start putting things on
the page. I start with my page header, which I include from
a fragment file. Then comes the headline, pastor’s name,
and sermon date (which I’ve reformatted to my liking).
After that, I put down the first passage, and then check to
see if there is a second. If not, I show nothing, or else I
print the code. Then, I add <P> tags to the body and show
that as well. I send two commands to the database object,
telling it to close the connection. Finally, I include a second
fragment—the page footer with a copyright notice and
other information—at the end of the template.

That’s it. That’s how easy it is to start building a basic
database publishing system.

Building an Index
If I were creating this project out of static HTML, I’d now
have to take all the sermon pages and copy and paste rele-
vant information from them into an index page. I’d proba-
bly want to show the date, the title, and the author of each
one. I’d also need to include the URL in an <A HREF> tag to
provide a pointer. The end result would look something like
the screenshot on the next page.

But this isn’t a static HTML project. All that informa-
tion is sitting in the database waiting to be used. Or, in this
case, reused.

I start with a very similar template as before. I open the
database connection and send some SQL asking for the
appropriate content. Then I include the page header and
display the results. Only this time, the SQL is different:

Set RS = Conn.Execute("SELECT sermonID, title, pastor,

sermonDate FROM sermons ORDER BY sermonDate DESC")

ASWD_001121.qxd 11/27/00 11:19 AM Page 232

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing234 235

You can see that I’m no longer asking the database for
every field. In my last SQL statement, I told it to SELECT *,
which means, “All Fields.” Now, however, I’m asking for
specific fields: sermonid, title, pastor, and sermonDate—still
from the table sermons. I could ask for them all, but since I
have no intention of using the body field, and because it’s
such a large field, my page will perform faster by being more
specific. There is one other difference between this SQL
statement and the previous—that is, the ORDER BY com-

mand. This takes the results of my query, which will come
out of the database in no particular order, and rank all the
rows by date. The DESC means descending. I could have oth-
erwise specified ASC to reverse the order.

The RS variable now has a lot of stuff in it. It’s holding
all the IDs, titles, pastor names, and dates of each sermon in
the database. My template needs to arrange this data into a
nice interface for my users. To do this, I’ll put everything in
a table, starting with some headers for each column:

<TABLE BORDER=0>

<tr>

<th>Date</th>

<th>Sermon</th>

<th>Pastor</th>

</tr>

Then I’ll start a loop that runs through all the results I
get back from my query, printing each variable as it comes
to it:

<% Do While Not RS.EOF %>

<tr>

<td class="sermondate"><%= RS("sermondate") %>

</td>

<td class="title">

<a href="sermonDisplay.asp?id=<%= RS("sermonID") %>">

<%= RS("title") %>

</td>

<td class="pastor"><%= RS("pastor") %></td>

</tr>

<%

RS.MoveNext

Loop

%>

There are some interesting things going on here. First, I
add a line of code that tells the template to loop through all

A list of all the pages available, organized as a navigable

index.

ASWD_001121.qxd 11/27/00 11:19 AM Page 234

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing236 237

the results until it runs out of results, or While not RS.EOF
(which stands for the “end of file”). At the end of the
block of code, I tell it to move to the next set of results
(RS.MoveNext) and the Loop. This will create row after row of
a table, but since I put this loop below the first <TR>, only
one header.

I’m still using the same class names for my CSS as
before, carefully matching them to the variable names to
keep everything clear. Each cell in the table now contains
the replaced value of each variable. The result is a well for-
matted table of contents to all the sermons in the database.

One final note of interest here. In the second cell of the
table, I’m displaying the title of the sermon. I’m also using
that page element as the navigational link to the actual ser-
mon. To do this, I’ve included part of the URL in the <A
HREF> tag, and used the sermonid variable from the database
to generate the rest of the address. As the template loops
through all the results of the query, the URLs automatically
are assembled to point to the correct sermon in the database:

<a href="sermonDisplay.asp?id=<%=RS("sermonID") %>">

The system is essentially complete. All the sermon pages
are identically formatted, creating a clean and consistent
interface to an ever-growing archive of content. That
archive is accessible through a nearly automatic index pulled
from the same reusable fields of the database I used for dis-
playing the sermons. Maintenance is a breeze. Want to
change the design? A quick template edit updates the hun-
dreds of existing pages on the site. Find an error? Change it
in the database and it updates wherever it appears—on a ser-
mon page, in the index, on the search results page.

Eternally Current
I’ll add one final feature to this little system that demon-
strates another aspect of the power of Object-Oriented
Publishing: keeping archives fresh.

On the sermon template, I’m going to create a box on
the right margin of the page that shows the last five sermons
that have been added to the database.
That way, no matter what sermon you
happen to be looking at, the page will
always feel like part of a Web site that
is kept up to date. The implications for
a sense of history, however, create an
interesting design paradox.

To start, I’ll take my existing tem-
plate, and add a simple one column
table aligned to the right of the body
copy. In that table, I’ll list the addi-
tions to the site. When we’re finished,
it should look something like the
screenshot to the right.

The table structure itself is easy to
create, especially since I’m doing all
the presentation (fonts, borders, back-
grounds, etc.) using a stylesheet. Since
we’ll be pulling the content of the
table out of the database, I’ll leave
that area blank for now.

<table width=200 cellspacing=0 cellpadding=0 align=right>

<tr>

<td valign=top>

<!--Table content goes here-->

</td>

</tr>

</table>

I’d also like the flexibility to use this little interface
component elsewhere on the site. It might make a nice
feature for the site’s home page, for example. To build in
that capability, I’ll put this code in a separate file to be
included in the template, and then add the include direc-
tive in the right place:

Now every sermon in the database—

no matter how old—can point to the

latest content.

ASWD_001121.qxd 11/27/00 11:19 AM Page 236

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing238 239

<!--#include virtual="/includes/recent_sermons.inc" -->

Of course, now I can simply add that line of code any-
where on the site to add the feature. The more features I
create, the more flexibility I get for my site, while still mak-
ing maintenance and consistency realistic goals.

Now, to get the content out of the box, I’ll repurpose the
SQL commands I used on the index page, but with a slight
difference. I’ll still be opening a connection to the database
and requesting content from the sermons table, but this time
I need even less data than before. I’m also changing the
name of the variable that stores all that information to
latest from RS so that they don’t collide with one another.

<%

Set latest = Conn.Execute("SELECT sermonID, title,

sermonDate FROM sermons ORDER BY sermonDate DESC")

%>

So once again, I’ve got a variable full of data to display on
the page. This time, rather than creating a perpetual loop
that waits for the end of the file, I’ll set up a loop that counts
to five, showing each line of my mini-index, and then stops.

<% for y = 1 to 5 %>

<div class="recent_title">

<a href="sermondisplay.asp?id=<%=latest("sermonID")%>">

<%= latest("title") %>

</div>

<div class="recent_date">

<%= latest("sermondate") %>

</div>

<%

latest.MoveNext

next

%>

I’ve created a simple object that I can include in any
page, but what’s more interesting is the effect it has on each
page. The sermon archive on this site spans five years worth
of content. But now, the content of each page—regardless
of age—is embellished with an up-to-the-minute accurate
feature. It is as if I was updating every single page in the
archive every time someone adds a new sermon to the data-
base. Of course, you could do something like this by hand,
but the labor would be prohibitive. You would literally
spend all your time maintaining your site, at the expense of
creating new content and features.

Systems like this also have an interesting historical
effect on the pages they contain. If I decided to, say, change
the background color of every page, or use advanced script-
ing for a feature, or whatever, I would be changing every
page. The implication, then, is that the pages will cease to
reflect the visual design and technological advances of the
era in which they were created. For example, when I was
studying history in college, I would scour editions of Time
Magazine dating from the late 1800s while doing research.
Much of the value of these sources was not only in the con-
tent of the articles, but the context in which they were dis-
played. Advertisements of the day, typography from the last
century, and other tidbits that would add to the overall
impression of the time in which the article existed. Will we
lose this value on the Web? Pages created just five years ago
already fail to render in today’s browsers, as old HTML ele-
ments become deprecated in new standards. The advent of
Object-Oriented Publishing takes this even further, separat-
ing not only content from its presentation, but its historical
context as well. It’s a tenuous balance between the efficien-
cy of dynamic publishing and the value of learning from our
past mistakes and achievements.

Regardless, be sure to take screenshots of all your work,
which will always depict your designs accurately.

ASWD_001121.qxd 11/27/00 11:19 AM Page 238

The Art & Sc ience of Web Design Chapter Eight - Object-Oriented Publ ishing240 241

A Changing Process
It took us a while at Wired to fully embrace a process like
the one I’ve described above. Some designers found it
insulting to think that each and every story in a Web site
should be absolutely identical. Content should be designed
based on what it says and what it means. Visual design
communicates as well as the words, they would argue. And
I would agree, but there is a reality on the Web that forces
a compromise.

First, design can and should conform to content, but
tools are tools. We spent an entire chapter in this book dis-
cussing how consistency in user interface leads to building
context. Users learn how interfaces work, and expect those
interfaces to work the same time after time. Developing
custom design treatments for story after story on a Web site
can lead to a disorientation as users are forced to pick out
the particular useful bits of an interface over and over again
as they move through a site.

But more importantly, a dynamic publishing system can
give commercial Web sites an edge to survival. The Web is
still young, and business models are evolving as quickly as the
technology behind today’s Web sites. Yet despite the surge in
“dot-com” stock prices and seemingly endless venture capital
being invested in startups, the fact remains that it can be
very difficult to provide free content supported with advertis-
ing. The cost of advertising on a Web site is significantly less
than what it costs to run ads in printed publications or on
television—two other forms of media that are typically free
to end users, with costs being offset by messages from spon-
sors. Ultimately, successful business models will emerge from
the chaos that is today’s adolescent Web. But today, commer-
cial sites need every edge they can muster.

The same held true for the evolving content develop-
ment process we experimented with at HotWired over the
first few years of our existence. Since we came from Wired
magazine, we followed a traditional print publishing
process—it was what we knew. It was a linear process. Step
by step we worked on individual pieces of content until

they were ultimately published on our Web site. If you were
to chart how it worked, it would have looked something
like the diagram to the right.

Using this method, an author
would iterate with an editor on the
particular story until they were both
satisfied with the content. Then, an
editor would send the finished piece to
a copyeditor, who would go over the
work in detail, checking grammar,
spelling, and facts, as well as ensuring
everything was in compliance with our
editorial style guidelines. From there,
the story would move into production,
where HTML specialists would add
the basic tags: paragraphs and links,
plus standard navigation like headers
and footers. Production would send
the story to a designer, who would do a
complete treatment on the piece—
much like a feature in a magazine.
Illustrations and photography would be commissioned; col-
ors, type and layout would be developed; display copy would
be created. Production and even copyedit steps would often
be repeated here to ensure nothing was changed. Then, to
the Quality Assurance (QA) people, who would test the
new content in a variety of browsers and ensure that stan-
dards for page performance and server compatibility were
maintained. Finally, the story would be posted by the
Webmaster, the one responsible for the live site. With such
an elaborate process, it won’t come as a surprise that we
weren’t able to publish very much. With a dozen sections in
our site, we added only a story or two to each section in a
week. Lots of content compared to a print magazine, but
not nearly enough for a Web site.

The Object-Oriented Publishing process changed all of
that. The new system essentially split the staff into two

Author

Editor

Copy Edit

Production

Design

Q A

Post

ASWD_001121.qxd 11/27/00 11:19 AM Page 240

Chapter Eight - Object-Oriented Publ ishing 243The Art & Sc ience of Web Design242

groups: those who developed the system, and those who
operated it. Now, the process was organized like this:

Authors and editors continued to collaborate and iterate
the stories, and copyeditors continued their rigorous inspec-
tion. But now, after a production manager had created the
basic HTML paragraphs and links, the content was added
to the database and was ready for publishing. At the same

time, designers and engineers were collaborating on tem-
plate systems similar to the one we looked at previously in
this chapter. They would blend the interface with the pro-
cedural code applicable to all the content being fed into the
database by editors. Designers could focus on macro issues
like site architecture, and micro issues like search interfaces
and headline rendering and be assured of consistency
throughout the sites. The content would simply flow into
the right places and the site would be alive.

Everyone could focus their energies on developing more
and better Web sites. We could keep up with falling adver-
tising rates without resorting to an ever-expanding staff.
Dynamic publishing systems can pay off in untold ways.

The Dangers of Being Dynamic
Admittedly, I am ever an optimist. The scenario I’ve decon-
structed in this chapter is a relatively simple one. An ever-
growing commercial Web site would undoubtedly scale out

of control without careful and frequent planning and revi-
sion. Still, a dynamic publishing system is a critical tool in
keeping up with the hyperspeed growth of the Web. It frees
designers and developers from the tyranny of mindless
maintenance and updates, allowing them to focus on creat-
ing more useful and engaging sites. Think of the process as
a design amplifier: It gives you the ability to do more and
better work.

That is not to say that dynamic publishing is without its
flaws. I’ve stated over and over in this book that HTML is
simple, and it is. So are the scripting languages behind
Object-Oriented Publishing—to a point. The scripts I’ve
shared with you in the preceding examples are far from
robust enough to survive in an actual highly trafficked Web
site. They lack the complexity of checking for errors, nor
are they optimized for efficiency—they are designed to illus-
trate the concepts behind dynamic publishing.

The added complexity of building pages as collections of
server-side scripts requires a much more developed level of
collaboration among your Web team. Our conceptual trian-
gle of Structure, Behavior, and Presentation is more at work
now than ever before. Engineers, designers, and editors
must be completely synchronized. Everyone must under-
stand how the system works and what exactly his or her role
in the process is. Without this understanding, templates,
interfaces, and content repositories simply cannot function.

Another warning: Dynamic publishing systems can make
you lazy. Many of the benefits I’ve outlined here can make
the workflow behind a Web site much more efficient. It is
critical to remember to keep quality checks in place as the
pace of publishing increases. When a system is designed to
let anyone publish anything at any time, the possibility that
something can go wrong increases exponentially.

Take, for example, this excerpt from a page on the
Excite portal. The Daily News page on Excite is a wonder
of dynamic publishing. Hundreds of stories a day are aggre-
gated from dozens of news sources to give readers access to
more information than any printed source could ever hope

Author

Editor

Copy Edit

Post

Production Design

Template System

OPERATIONS DEVELOPMENT

ASWD_001121.qxd 11/27/00 11:19 AM Page 242

Chapter Eight - Object-Oriented Publ ishing 245The Art & Sc ience of Web Design244

to do. Personalization tools allow users to create custom
views of news that interest them. It’s a very powerful appli-
cation indeed.

Yet with all this power, it’s easy to
lose sight of the editorial heuristics on
which professional publishers depend.
This example shows a classic problem
with dynamic publishing. Three head-
lines, probably all edited and chosen
by smart editors, have been aggregated
in a way that borders on the absurd.
Simple copyediting would help here.
The designers could have used bullets
on each headline to distinguish them.
The point is that dynamic publishing
can lead to unforeseen mistakes if
you’re not very careful to keep things
under control.

Design in an Object-Oriented
World
What are the implications for design-
ing within database-driven, dynamic
Web sites? Think back to our discus-
sion of client-side behavior in Chapter
Four. It showed how using simple

scripts in the browser can make an interface respond to the
unknown variables in which our pages can exist. Page
columns need to be flexible to accommodate different
screen resolutions. Headlines can size themselves based on
the width of a browser window. Typography becomes a
game of guesswork against an unidentified selection of
installed fonts.

Think also of our discussion of structure. If Object-
Oriented Publishing teaches us anything, it is that good
design comes from good planning. My simple example of a
sermon archive would never have been successful had I not
taken the time to fully understand the structure and ulti-

While it certainly would be odd for the

African Embassy to bomb Apple’s

iMac—that’s probably not what the edi-

tors had in mind.

mate architecture of the content. In Chapter Three we cov-
ered good Information Architecture coming from the pat-
terns already present in content. In this chapter, I made
explicit use of those patterns by infusing them in database
structures and logical page templates.

This chapter offered tools for designers facing the uncer-
tain future of dynamic design. We’ve left behind the
absolutes of traditional graphic design. We’re embracing a
world of variables and uncertainty. The only way to thrive
in such a nebulous environment is to start simply. Look for
patterns. Build with little blocks into complex structures.
Account for the limitations of the Web, the browsers, and
the rich and diverse audience that will soon be flowing
through your pages.

Now get busy. We’ve got a lot of work to do yet.

ASWD_001121.qxd 11/27/00 11:19 AM Page 244

247246

A
alorem, 134

aipsum, 6, 32, 102

adolor sit, 178-179

item1, 280

item2, 17
item3, 282

amet, 89, 91–93

aconsectetuer, 2, 4, 9-12

nonitem a, 3
super item b, 9, 23, 51, 59, 66-69,

82, 109, 144, 146-169, 211-218,

304-306

kinky item c, 299

this item d, 48

my item e, 65

adipiscing elit, 200-210

ased diam, 259

anonummy, 43-44

anibh, 59

B
beuismod, 39

btincidunt, 54, 58, 59, 102, 104-109,

211-212, 260, 301

cvolutpat black, 32, 65, 78, 92, 102-

103, 145

cvolutpat white, 32, 65, 78

but laoreet, 201

bdolore, 43

bmagna, 43

baliquam, 75

berat, 197-198

bdolore, 43

bmagna, 43

baliquam, 75

berat, 197-198

but laoreet, 201

bdolore, 43

bmagna, 43

baliquam, 75

cvolutpat black, 32, 65

cvolutpat white, 32, 65, 78

berat, 197-198

bdolore, 43

bmagna, 43

C
clorem, 134

cipsum, 6, 32, 102

cdolor sit, 178-179

item1, 280

item2, 17
item3, 282

cmet, 89, 91–93

cconsectetuer, 2, 4, 9-12

nonitem a, 3
super item b, 9, 23, 51, 59, 66-69,

82, 109, 144, 146-169, 211-218,

304-306

kinky item c, 299

this item d, 48

my item e, 65

cdipiscing elit, 200-210

csed diam, 259

cnonummy, 43-44

cnibh, 59

D
deuismod, 39

Index

ASWD_001121.qxd 11/27/00 11:19 AM Page 246

Index 249The Art & Sc ience of Web Design248

this item d, 48

my item e, 65

jdipiscing elit, 200-210

jsed diam, 259

jnonummy, 43-44

jnibh, 59

K
keuismod, 39

ktincidunt, 54, 58, 59, 102, 104-109,

211-212, 260, 301

cvolutpat black, 32, 65, 78, 92, 102-

103, 145

cvolutpat white, 32, 65, 78

kut laoreet, 201

kdolore, 43

kmagna, 43

kaliquam, 75

kerat, 197-198

L
llorem, 134

lipsum, 6, 32, 102

ldolor sit, 178-179

item1, 280

item2, 17
item3, 282

lmet, 89, 91–93

lconsectetuer, 2, 4, 9-12

nonitem a, 3
super item b, 9, 23, 51, 59, 66-69,

82, 109, 144, 146-169, 211-218,

304-306

kinky item c, 299

this item d, 48

my item e, 65

ldipiscing elit, 200-210

lsed diam, 259

lnonummy, 43-44

lnibh, 59

M
meuismod, 39

mtincidunt, 54, 58, 59, 102, 104-109,

211-212, 260, 301

cvolutpat black, 32, 65, 78, 92, 102-

103, 145

cvolutpat white, 32, 65, 78

mut laoreet, 201

mdolore, 43

mmagna, 43

maliquam, 75

merat, 197-198

N
nlorem, 134

nipsum, 6, 32, 102

ndolor sit, 178-179

item1, 280

item2, 17
item3, 282

nmet, 89, 91–93

nconsectetuer, 2, 4, 9-12

nonitem a, 3
super item b, 9, 23, 51, 59, 66-69,

82, 109, 144, 146-169, 211-218,

304-306

kinky item c, 299

this item d, 48

my item e, 65

ndipiscing elit, 200-210

nsed diam, 259

nnonummy, 43-44

nnibh, 59

dtincidunt, 54, 58, 59, 102, 104-109,

211-212, 260, 301

cvolutpat black, 32, 65, 78, 92, 102-

103, 145

cvolutpat white, 32, 65, 78

dut laoreet, 201

ddolore, 43

dmagna, 43

daliquam, 75

derat, 197-198

E
elorem, 134

eipsum, 6, 32, 102

F
feuismod, 39

ftincidunt, 54, 58, 59, 102, 104-109,

211-212, 260, 301

cvolutpat black, 32, 65, 78, 92, 102-

103, 145

cvolutpat white, 32, 65, 78

fut laoreet, 201

fdolore, 43

fmagna, 43

faliquam, 75

ferat, 197-198

G
glorem, 134

gipsum, 6, 32, 102

gdolor sit, 178-179

item1, 280

item2, 17
item3, 282

gmet, 89, 91–93

gconsectetuer, 2, 4, 9-12

nonitem a, 3

super item b, 9, 23, 51, 59, 66-69,

82, 109, 144, 146-169, 211-218,

304-306

kinky item c, 299

this item d, 48

my item e, 65

gdipiscing elit, 200-210

gsed diam, 259

gnonummy, 43-44

gnibh, 59

H
heuismod, 39

htincidunt, 54, 58, 59, 102, 104-109,

211-212, 260, 301

cvolutpat black, 32, 65, 78, 92, 102-

103, 145

cvolutpat white, 32, 65, 78

hut laoreet, 201

hdolore, 43

hmagna, 43

haliquam, 75

herat, 197-198

J
jlorem, 134

jipsum, 6, 32, 102

jdolor sit, 178-179

item1, 280

item2, 17
item3, 282

jmet, 89, 91–93

jconsectetuer, 2, 4, 9-12

nonitem a, 3
super item b, 9, 23, 51, 59, 66-69,

82, 109, 144, 146-169, 211-218,

304-306

kinky item c, 299

ASWD_001121.qxd 11/27/00 11:19 AM Page 248

I wrote this book using Microsoft Word on a tiny little
Sharp Actius laptop. It has a wireless Ethernet card that
enables me to write from the back deck of my condo in San
Francisco. I kept track of all the various files, images, and
links to sites on a Web site using a fantastic little tool called
Blogger (www.blogger.com).

We then used QuarkXPress 4.1 on a Macintosh G3
Laptop to lay out all the pages. Body copy is Goudy Old
Style, which was designed by Frederic W. Goudy in 1915.
Look closely and you’ll see the dots on the lowercase i, j,
and punctuation are really elegant little diamonds. The
headings and cover type is FF Meta designed in 1984 by
Erik Spiekermann for the German Post Office (although
they never actually used it). Illustrations were created in
Adobe Illustrator 8.0, and screenshots were taken using
Snaggit 5.0, which I’ve honestly been meaning to register.

The Quark files were then output to Adobe PDF files
and sent directly to blah blah blah I don’t know how this
all works… NEEDS TO BE COMPLETED

The bicycle I ride up and down Mt. Tamalpais between
chapters was custom built out of titanium 3Al-2.5V tubing
by the fine folks at Seven Cycles in Watertown, Mass.

Colophon

ASWD_001121.qxd 11/27/00 11:19 AM Page 250

ASWD_001121.qxd 11/27/00 11:19 AM Page 252

